UT-ONE B03B

3-Channel Thermometer Readout

User manual

Version 2.07.xx

BATEMIKA
3-Channel Thermometer Readout

Table of Contents

1 INTRODUCTIONS 5
2 GETTING STARTED6
2.1 Warnings and cautions 6
2.2 POWER SUPPLY 7
2.3 Starting and stopping the UT-ONE 7
2.4 USB DEVICE DRIVERS 8
2.5 CONNECTION OF THERMOMETER PROBES 9
2.5.1 Connection of platinum resistance thermometers and thermistors 10
2.5.2 Connection of thermocouples. 11
2.5.3 Internal cold-junction compensation 11
2.5.4 Connection of ambient conditions probe 12
2.6 Channels 13
2.7 MeASUREMENT RANGES. 14
3 USER INTERFACE 16
3.1 User Interface Structure. 16
3.2 User Interface Elements 17
3.3 Measurement page 18
3.3.1 Mixed view 18
3.3.2 Graph view 20
3.3.3 Numeric view 21
3.3.4 Channel view 21
3.4 CONFIGURATION PAGE 22
3.4.1 Main Channels Configuration 22
3.4.2 Options 23
3.4.3 Access Level. 26
3.4.4 Probe List 27
3.4.5 Measurement Range List. 30
3.4.6 Touch Screen Calibration 32
3.4.7 Communication Interfaces 33
3.4.8 External Standards 33
4 PROBE CHARACTERIZATION 35
4.1 DATA STRUCTURE 35
4.2 PRobe types 36
4.2.1 PP: PRT polynomial 36
4.2.2 PC: PRT CVD. 36
4.2.3 PI: SPRT ITS-90 36
4.2.4 NS: NTC Steinhart-Hart 37
4.2.5 NP: NTC Polynomial 37
4.2.6 NE: NTC exponential. 38
4.2.7 TK: Thermocouple Type K. 38
4.2.8 TJ: Thermocouple Type J 38
4.2.9 TT: Thermocouple Type T 39
4.2.10 TE: Thermocouple Type E 39
4.2.11 TN: Thermocouple Type N 39
4.2.12 TS: Thermocouple Type S. 40
4.2.13 TR: Thermocouple Type R. 40
4.2.14 TB: Thermocouple Type B. 40
4.3 Ambient probes 41
4.3.1 Relative humidity deviation function 41
4.3.2 Temperature deviation function. 41

BATEMIKA
3-Channel Thermometer Readout

5 REMOTE COMMUNICATION INTERFACE .. 42
5.1 USB INTERFACE .. 42
5.2 RS232 INTERFACE... 43
5.3 HYPERTERMINAL... 45
5.4 MODBUS PROTOCOL SUPPORT .. 46
5.4.1 MODBUS message structure .. 46
5.4.2 Function codes.. 47
5.4.3 MODBUS Parameter Table .. 48
5.4.4 Data formats ... 50
5.4.5 MODBUS Examples.. 51
5.4.6 QModMaster Test Software ... 52
5.5 UT-ONE COMMAND SET ... 53
5.5.1 Command syntax... 53
5.5.2 Channel configuration commands ... 56
5.5.3 Parameter configuration commands ... 59
5.5.4 Device control commands .. 61
5.5.5 Probe management commands .. 63
5.5.6 Internal flash memory commands.. 64
5.5.7 GPIB interface configuration commands.. 66
5.5.8 Identification string commands.. 67
5.5.9 Display data streaming commands.. 69
5.5.10 Continuos measurement commands.. 69
5.5.11 Single measurement commands ... 72
5.5.12 Real time clock commands ... 74
5.5.13 Raw ADC commands ... 74
5.5.14 Validation commands.. 75

6 MEASUREMENT MODES ... 77
6.1 CONTINUOUS MEASUREMENT MODE.. 77
6.2 SINGLE-READING MODE... 77
6.3 SINGLE-READING MODE WITH EXTERNAL STANDARD.. 78
6.4 DIGITIZING MEASUREMENT MODE .. 79

7 BATTERIES .. 80
7.1 INTERNAL LI-ION BATTERY ... 80
7.2 LITHIUM BUTTON BATTERY ... 80

8 UT-ONE APPLICATIONS SOFTWARE ... 81
8.1 UT-ONE INTERFACE.. 83
8.2 UT-ONE Probe Calibration Demo... 91
8.3 UT-ONE RANGE READJUSTMENT ... 95
8.4 UT-ONE DIGITIZING .. 99
8.5 UT-ONE COMmUnication TESting ... 101
8.6 UT-ONE LOG VIEWER... 102
8.6.1 Logging to internal SD card .. 102
8.6.2 Logging to internal Flash Memory .. 104
8.7 UT-ONE Temperature Monitoring .. 106
8.8 UT-ONE CLIMATIC CHAMBER VALIDATION.. 108
8.8.1 Theoretical background... 108
8.8.2 Measurement procedure.. 108
8.8.3 Configuration.. 109
8.8.4 Measurement file ... 114
8.8.5 Measurement... 115
8.8.6 Data analysis ... 116
8.8.7 Chamber control. 117
8.9 UT-ONE PARALLEL AcQUIIITION 120
8.10 UT-ONE FIRMWARE UpGRADE 122
9 SPECIFICATIONS 124
9.1 General specifications 124
9.2 MAIN CHANNELS 125
9.2.1 Specifications for PRT subranges 126
9.2.2 Specifications for thermistor subranges 126
9.2.3 Specifications for thermocouple subranges 126
9.2.4 Pt-100 specifications 127
9.2.5 Pt-25 specifications 128
9.2.6 Thermistor 3K3A specifications 129
9.2.7 Thermistor 10K3A specifications 130
9.2.8 Thermocouple Type K specifications 131
9.2.9 Thermocouple Type S specifications 132
9.3 Auxiliary channels 133
9.4 ENVIRONMENTAL SPECIFICATIONS 133
10 TROUBLESHOOTING 134
11 FREQUENTLY ASKED QUESTIONS 135

1 Introductions

UT-ONE BO3B is an accurate and versatile thermometer readout. UT-ONE BO3B is capable of measuring platinum resistance thermometers, thermistors and thermocouples. Resistance probes can be measured in 4 -wire (default), 3 -wire or 2 -wire connection configuration. Optionally, an external combined probe may be used for the measurement of ambient conditions (air temperature and relative humidity). UT-ONE B03B features a colour touch screen which presents measured data in graphical and numerical format. UT-ONE B03B can be operated in a stand-alone mode or connected to the computer via the serial or USB interface. UT-ONE BO3B can be battery-operated from the internal Li-ion battery, which provides up to nine hours of standalone operation.

Figure 1: UT-ONE BO3B 3-channel thermometer readout

2 Getting Started

2.1 Warnings and cautions

Use the instrument only as specified in this manual. Keep a copy of this manual for future reference. Besides the general good practice for handling electronic equipment, follow these particular warnings and cautions:

- Read user manual before starting the UT-ONE operation!
- UT-ONE is designed for indoor use only. Prevent the use of instrument in wet or damp conditions, prolonged direct sunshine, vibrations, dust, water vapor, fumes and chemical residues.
- Use and store UT-ONE according to environmental conditions as listed in Specifications.
- When moving the unit from a cold to warm and humid ambient, take measures to prevent condensation on and inside the instrument. If condensation occurs, do not start the instrument. Condensation may damage the instrument or cause drift of calibration values.
- Do not connect any of the connectors to electric potential, which is lower than -0.3 V or higher than 3 V referred to system ground. Higher voltages may damage the instrument or cause personal injury.
- Avoid using the instrument in environments prone to electrostatic discharges (ESD). ESD may disturb the normal operation of the instrument, and may cause permanent damage to electronic components, which may in long term cause instrument failure.
- Prevent electric contact between probes, cable leads and cable shields and the conductors which are electrically energized. This may result in severe shock, personal injury or death, fire hazard and damage to instruments.
- Connect probes only in floating configuration.
- Use only a CE certified external power adaptor with low voltage ripple and low leakage current. External adaptor voltage and current rating must be within instrument electrical specifications. Use the power adaptor only with mains power supply as specified on its rating plate.
- When powering the UT-ONE B03B from a USB 2.0 port, make sure that the USB port can provide sufficient power. UT-ONE B03B can draw up to 500 mA (one standard USB 2.0 load). Check the USB host specifications to avoid overloading. Note that connecting several device to one USB hub may cumulatively overload the USB host. If USB port is overloaded, UT-ONE B03B may not be able to properly recharge the internal Li-ion battery, resulting in reduced capacity and shorter battery life. For long-term operation we recommend the use of provided external power adaptor.
- The instrument may be used to measure extremely high or low temperatures. Extreme care must be taken when handling thermometer probes, otherwise personal injury, and damage to equipment or fire may occur. Always allow the thermometer probe to reach ambient temperature in a controlled and supervised manner.
- If instrument or external power adaptor is damaged, do not use it. Secure the instrument and contact support for further instructions.
- Clean only with a damp cloth. Do not wet or allow water to penetrate the instrument. Do not use chemical solvents to clean the instrument. If the display becomes stained, use a mild soap solution.
- Always fully discharge the internal Li-ion battery before shipping the UT-ONE B03B with a courier service.
- After replacing the internal Li-ion battery, make sure it is firmly secured with a cable tie.
- Do not use sharp objects to manipulate the touch screen. Touch screen may be operated with fingers or (preferably) with a stylus pen. Touching the screen with dirty or greasy objects may cause permanent stains. Do not use excessive force while manipulating the touch screen.
- Do not place objects, liquid containers or other instrumentation on top of the UT-ONE. Handle the instrument carefully to prevent mechanical damage.
- When ambient probe is disconnected, always attach the plastic protective plug in order to protect the interface from dirt and ESD damage.

2.2 Power supply

UT-ONE B03B can be operated from three power sources:

- External power adaptor. Use only the CE certified external adaptor with $6 \mathrm{VDC} \pm 0.5 \mathrm{~V}, 0.5 \mathrm{~A}$ to 1.5 A output rating. External power adaptor must have low voltage ripple and low leakage current. Use of non-compliant external adaptors may degrade performance or cause personal injury and instrument damage, which is not covered by warranty. The UT-ONE BO3B has a coaxial power connector with negative outer contact and positive inner contact ($\odot-{ }^{-}-\oplus$).
- USB interface. UT-ONE BO3B can be powered directly from the USB cable, connected to a computer or USB hub. Note that UT-ONE BO3B may draw up to $500 \mathrm{~mA} \mathrm{DC} \mathrm{(one} \mathrm{standard}$ USB 2.0 load). This current may not be available on some portable devices or USB hubs, so consult the documentation of the USB host device before connecting it to UT-ONE B03B.
- Li-ion battery. Internal Li-ion battery with $3000 \mathrm{mAh}(11.1 \mathrm{~Wh}$) capacity is sufficient for up to 9 hours of standalone operation. To improve standalone-operation time, put the device in sleep mode, which disables the display, but continues to acquire and log data. If running on Li-ion battery, UT-ONE B03B will automatically shut down when only 5% capacity is remaining. Li-ion battery will automatically recharge when the external adaptor or USB interface is connected.
Using both the external power adaptor and USB interface at the same time is acceptable. Power supplies may be connected or disconnected during operation (UT-ONE performs automating switching to Li-ion battery). Li-ion battery has a typical endurance of 500 charging cycles, during which capacity will slowly decrease. UT-ONE B03B has a built-in counter of charging cycles.

2.3 Starting and stopping the UT-ONE

UT-ONE B03B can be started by pressing the ON/OFF button, located on the right side of the UT-ONE B03B front panel. Press and hold the ON/OFF button, until the screen lights up. Note that UT-ONE BO3B cannot be started from the communication interface or touch screen.
UT-ONE B03B can be stopped by pressing the ON/OFF button. The screen will display a "shutting down..." warning, store the current configuration, release the resources, and shutdown.
In case the UT-ONE BO3B becomes unresponsive, a hard shutdown may be employed by pressing and holding the ON/OFF button for more than 10 seconds. This will turn off the power supplies without storing the current configuration and without releasing the resources, so this procedure should be avoided. After a hard shutdown, wait at least 30 seconds before restarting the UT-ONE BO3B.
UT-ONE B03B can also be stopped from the communication interface by issuing the stop command. Note that after stopping, UT-ONE B03B cannot be restarted using the communication interface, so manual intervention is required.

2.4 USB device drivers

UT-ONE thermometer readouts are shipped with a set of USB device drivers, which support MS Windows 7 and later. USB device drivers are located on the installation CD, in the UT-ONE application folder and are also available for download in the Downloads section on www.batemika.com.
Depending on your operating system, installation of USB device drivers may require administrator rights.
After you connect your UT-ONE thermometer readout using the USB interface to a computer for the first time, Windows will automatically try to search for the appropriate drivers. After the automatic search fails, the Windows will prompt you to locate the drivers. Manually select the location of the USB drivers on the installation CD or local directory.
Alternatively, you can install the USB device drivers for UT-ONE thermometer readout manually before the connection of the UT-ONE thermometer readout. Locate the UT-ONE.inf file and use right click to activate the context menu. Select the Install menu command. Confirm the installation in the driver installation dialog. After a few seconds, installation is confirmed with a dialog stating "The operation completed successfully."

Figure 2: Manual installation using the command in context menu

After the USB device drivers are successfully installed, the UT-ONE device becomes visible in the Windows Device Manager. You may now start using the UT-ONE with USB communication interface.
When the UT-ONE USB interface is reconnected after successful first installation, Windows will automatically detect and recognize your UT-ONE device and load appropriate drivers, without the need for user intervention.
UT-ONE LabVIEW drivers require NI VISA runtime engine to be installed on target computer. NI VISA runtime engine is part of the UT-ONE Applications installer, but a newer version can be manually downloaded from www.ni.com and installed on your computer.

2.5 Connection of thermometer probes

UT-ONE B03B has three independent channels for the connection of thermometer probes. Each channel can be enabled or disabled individually. Disabled channels are removed from the acquisition sequence. Connection of different probe types on different channels is acceptable. Probes can be connected with the UT-ONE B03B switched on, however it is recommended that the acquisition sequence is stopped during connection in order to avoid out-of-range readings.

Figure 3: Connectors for the connection of thermometer probes on three main channels
Connectors for one channel ($C x$) consist of four banana-style connectors and one miniature thermocouple connector. Banana-style connectors accept bare wires, spade lugs and banana connectors. Note that voltage connectors and thermocouple connector are internally connected. Simultaneous connection of a PRT on banana connectors and a thermocouple on miniature thermocouple connector is not allowed and will result in erroneous readings.

Figure 4: Connectors for one main channel

2.5.1 Connection of platinum resistance thermometers and thermistors

Platinum resistance thermometers and thermistors (RTDs) are by default connected using the 4 -wire (Kelvin) connection. RTD is connected using a pair of current wires and a pair of voltage wires. This connection produces best measurement results and is applicable to UT-ONE accuracy specification.
If the RTD has only three connecting wires, connect one pair of wires to current connectors and the remaining wire to the positive voltage connector. Make sure you select 3 -WIRE connection during channel configuration.
If the RTD has only two connecting wires, connect it to current connectors. Make sure you select 2-WIRE connection during channel configuration. Note that in this case, the resistance of connecting wires represents a measurement error, so this connection is acceptable only for thermistor measurements, where wire resistance is usually negligible compared to sensor resistance.
RTD lead wires must be connected in floating configuration, with no electrical connection to system ground or any other electrical potential.

Figure 5: Default 4-wire connection of a RTD

Figure 6: 3-wire connection of a RTD

Figure 7: 2-wire connection of a RTD

2.5.2 Connection of thermocouples

Thermocouples are by default connected using a miniature thermocouple connector. Note that the thermocouple connector is neutral type, which means that it has copper wires on both connections, so any thermocouple type can be connected. Thermocouple can also be connected directly to voltage connectors, which are internally connected to the thermocouple connector. This connection is recommended for thermocouples with external cold junction (with cold junction compensation in ice point). Note that red connector is the positive and black connector is the negative pole. Never connect a thermocouple to the thermocouple connector and voltage connector on the same channel.
Alternatively, thermocouples can also be connected to current connectors. In this case, make sure you select the auxiliary thermocouple connection during channel configuration. This auxiliary connection is independent from the default connection on thermocouple connector/voltage connector, so you can connect a thermocouple in the auxiliary connection and in the default connection at the same channel.
Thermocouple wires must be connected in a floating configuration (not electrically connected to system ground or any other electrical potential). In order to provide optimum measurement conditions, one of the leads is internally connected to voltage bias of 2 V .

Figure 8: Default thermocouple connection using the thermocouple connector

Figure 9: Default thermocouple connection using the voltage connectors

Figure 10: Auxiliary thermocouple connection using the current connectors

2.5.3 Internal cold-junction compensation

UT-ONE BO3B has an additional internal digital thermometer probe, which can be used as cold junction compensation for thermocouple measurements. This thermometer probe is located between the thermocouple connector and voltage connector. The probe is located inside the housing with significant thermal inertia and implements extensive digital filtering, so the response to rapid changes in ambient temperature is slow, possibly resulting in significant dynamic errors. To obtain best accuracy, always use UT-ONE B03B in ambient with constant temperature and wait at least 30 minutes after a significant change in ambient conditions. Current value of the internal thermometer, as well as temperature trends, can be observed in channel T .

2.5.4 Connection of ambient conditions probe

Optional ambient-conditions probe is used for the measurement of air temperature and relative humidity.
Ambient-conditions probe is connected to the 4-pole circular connector located above the touch screen. If connector is protected by the plastic protective plug, unscrew it first. Then, gently push the probe into the connector and screw it in until it is firmly attached. Ambient probe can be used with or without the extension cable. To use it without the extension cable, unscrew the probe from the cable and connect it directly to UT-ONE B03B.
It is recommended that you switch off the UT-ONE B03B while connecting or disconnecting the ambient probe.
When ambient probe is disconnected, always attach the plastic protective plug in order to protect the interface from dirt and ESD damage.

Figure 11: Ambient probe connector with plastic protective plug removed

Figure 12: Direct connection and connection with $2 \boldsymbol{m}$ extension cable

2.6 Channels

UT-ONE B03B measurement system consists of several measurement channels. The main channels are C1, C2 and C3, which correspond to three channels for the connection of three thermometer probes. RH channel displays the relative humidity of the optionally connected combined probe. TA channel displays the ambient temperature of the optionally connected combined probe. TD displays the dewpoint temperature, which is calculated from the relative humidity RH and ambient temperature TA. TJ is the temperature of the internal thermometer, which is used for the internal compensation of the cold junction of thermocouples.
UT-ONE B03B supports two formats for channel names. Short format consists of two characters and a space, for example "C1 ", while long format consists of three characters, for example "C01". Note that in the remote-interface commands, channel name always consist of three characters, but both short and long format may be used.

Table 1: List of channel names (channel names in long format are given in parenthesis)

Channel	Description
RT (RT)	Real time clock
C1 (C01)	Corrected temperature reading from temperature probe on channel C 1
C2 (C02)	Corrected temperature reading from temperature probe on channel C2
C3 (C03)	Corrected temperature reading from temperature probe on channel C3
RH (CRH)	Corrected reading of relative humidity from external ambient-conditions probe
TA (CTA)	Corrected reading of air temperature from external ambient-conditions probe
TD (CTD)	Corrected reading of dew-point temperature from external ambient-conditions probe. This reading is calculated from values in channels RH and TA
TJ (CTJ)	Corrected temperature reading of internal thermometer for cold-junction compensation
TI (CTI)	Corrected temperature of the A/D converter. Used for internal correction of temperature coefficients
B1 (B01)	Raw reading (resistance or emf) of the temperature probe on channel C1
B2 (B02)	Raw reading (resistance or emf) of the temperature probe on channel C2
B3 (B03)	Raw reading (resistance or emf) of the temperature probe on channel C3
BH (BRH)	Uncorrected reading of relative humidity from external ambient-conditions probe
BA (BTA)	Uncorrected reading of air temperature from external ambient-conditions probe
BD (BTD)	Uncorrected reading of dew-point temperature from external ambient-conditions probe. This reading is calculated from values in channels BH and BA
BJ (BTJ)	Uncorrected temperature reading of internal thermometer for cold-junction compensation
BI (BTI)	Uncorrected temperature of A/D converter

2.7 Measurement ranges

UT-ONE measurement subsystem consists of 31 physical measurement ranges, which allow the user to perform the measurements with best accuracy and efficiency. Measurement ranges are divided in three range groups, namely the PRT, thermistor and thermocouple ranges. Range h 7 is an auxiliary range, which allows the extension of measurement range up to $200 \mathrm{k} \Omega$ at reduced measurement current, but this range is not part of the UT-ONE specifications and should be used with caution.

Table 2: List of physical measurement ranges for main channels

Name	Nominal range	Over range	Measurement current	Range group
R1	25Ω	31.25Ω	1 mA	PRT ranges
R2	50Ω	62.5Ω	1 mA	PRT ranges
R3	100Ω	125Ω	1 mA	PRT ranges
R4	200Ω	250Ω	1 mA	PRT ranges
R5	400Ω	500Ω	1 mA	PRT ranges
R6	800Ω	1000Ω	1 mA	PRT ranges
r1	25Ω	31.25Ω	0.707 mA	PRT ranges
r2	50Ω	62.5Ω	0.707 mA	PRT ranges
r3	100Ω	125Ω	0.707 mA	PRT ranges
r4	200Ω	250Ω	0.707 mA	PRT ranges
r5	400Ω	500Ω	0.707 mA	PRT ranges
r6	800Ω	1000Ω	0.707 mA	PRT ranges
H1	2500Ω	3125Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
H2	5000Ω	6250Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
H3	10000Ω	12500Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
H4	20000Ω	25000Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
H5	40000Ω	50000Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
H6	80000Ω	100000Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
h1	2500Ω	3125Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
h2	5000Ω	6250Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
h3	10000Ω	12500Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
h4	20000Ω	25000Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
h5	40000Ω	50000Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
h6	80000Ω	100000Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
h7	160000Ω	200000Ω	$7.07 \mu \mathrm{~A}$	Auxiliary range
E1	15 mV	18.28125 mV	Not applicable	Thermocouple ranges
E2	30 mV	36.5625 mV	Not applicable	Thermocouple ranges
E3	60 mV	73.125 mV	Not applicable	Thermocouple ranges
E4	125 mV	146.25 mV	Not applicable	Thermocouple ranges
E5	250 mV	292.5 mV	Not applicable	Thermocouple ranges
E6	500 mV	585 mV	Not applicable	Thermocouple ranges

Each physical range has nominal range limit. Specifications are applicable only to measurements up to nominal range limit. Each physical range features also some over range, which is approximately 25%

3-Channel Thermometer Readout

higher than nominal range limit. Measurements can be normally performed in the over range, but significantly higher linearity error should be expected and taken into account in the uncertainty budget.
Apart from the 31 physical ranges, UT-ONE measurement subsystem implements also 5 virtual autoranges. Autoranges are implemented to simplify configuration of acquisition channels, so the user doesn't need to know the expected resistance or emf of the thermometer probe. When using autoranging, UT-ONE first samples the approximate value of prober resistance or emf and then selects the optimal physical measurement range accordingly. Note that there is no difference in accuracy or measurement speed between autorange and equivalent manually-selected physical range.

Table 3: List of virtual autoranges for main channels

Name	Nominal range	Over range	Measurement current	Range group
RA	0 to 800Ω	1000Ω	1 mA	PRT ranges
rA	0 to 800Ω	1000Ω	0.707 mA	PRT ranges
HA	0 to 80000Ω	100000Ω	$10 \mu \mathrm{~A}$	Thermistor ranges
hA	0 to 80000Ω	100000Ω	$7.07 \mu \mathrm{~A}$	Thermistor ranges
EA	0 to 500 mV	585 mV	Not applicable	Thermocouple ranges

3 User Interface

UT-ONE B03B has a touch-screen user interface. The only exception is the start key, which is located on the right side of the screen and is used for starting and stopping the UT-ONE B03B.
Touch screen is a resistive type of touch screen, which unlike the capacitive type touch screens (common in smart phones) requires a press and not just a touch. There is also no support for multitouch operations.
Touch can be performed with fingers or stylus pens. If using fingers, make sure you do not introduce grease or sweat on the screen surface, as this may result in stains that cannot be removed. Never use sharp or abrasive objects to manipulate the screen, as this may result in permanently damaged screen. Every touch is accepted with both visual and sound feedback.
There are two types of a touch. Short touch is confirmed with as single click sound and the user must release the screen immediately. Long touch is confirmed with first click sound and the user must hold the touch for another second, until a second click sound signals that the long touch was accepted. Note that short and long touch may have different functionality associated to them.

3.1 User Interface Structure

User interface structure is composed of a set of windows, which are organized on two pages. Pages are selectable using the page selector located on the right-hand side of the screen. Each page has several windows, which can be accessed sequentially by repeatedly pressing the page selector. Measurement page is used to control and display measurements in different formats, while the Configuration page is used to view and change instrument configuration and parameters.

Figure 13: User Interface Structure

3.2 User Interface Elements

Each window on the user interface is composed of several common elements, which are common to windows on both pages.
The main frame presents data specific to currently selected window and will be described in details for each window in the following chapters.
The menu consists of up to five menu buttons, which dynamically change according to window content and instrument state. Note that some menu buttons have a different function for the short and long touch.
The page selector consists of two page tabs, which are labelled MEASURE and CONFIGURE. The currently selected page is displayed in front and with brighter background. You may repeatedly press the page selector to scroll through all windows in the selected page. Using the long touch on the page selector will select the first window in the window sequence. Changing pages and windows will not affect measurements, but changes to configuration that were not explicitly saved will be lost after changing the window or page.
The acquisition status indicator displays the current status of the acquisition sequence. If several main channels are enabled, the acquisition status indicator will scroll through each channel as it is being acquired. If all main channels are disabled, but the acquisition is started, acquisition status indicator will display AP, which indicates that only ambient probes are being acquired. If acquisition is stopped, acquisition status indicator will display STOP.
The battery status indicator displays the current status of the battery. Each bar in the battery status indicator represents approximately 20% of the battery capacity. If UT-ONE is connected to external power supply, the background of the battery status indicator will turn blue. If UT-ONE is running on batteries and battery capacity is below 20\%, the background of the battery status indicator will turn red. You can get more information about battery status in the Power options in the Configure page.

Figure 14: User Interface Elements

3.3 Measurement page

Measurement page consists of four windows, which are used for viewing and controlling the measurements on configured channels. Each window presents measurements in a different view, such as graphic and/or numeric format. Windows with different views in the Measure page can be selected by repeatedly pressing the MEASURE page selector or the VIEW... menu button.
Acquisition sequence can be started by touching the green START menu button and stopped by touching the red STOP menu button. Note that the menu button functionality and appearance is automatically adjusted according to current acquisition state.

IMPORTANT!
 If acquisition sequence is stopped, displayed readings will not be refreshed!

3.3.1 Mixed view

Mixed measurement view is the basic measurement view, which presents the measurement data in both numerical and graphical format, as well as some measurement statistics and uncorrected raw data.
Mixed measurement view is divided in two sections. The left-hand side of the main frame presents the data in the graph, while the right-hand side of the main frame displays the data in numerical format.

Figure 15: Mixed view
The left-hand side of the main frame displays the graph. Graph can display up to seven channels. Displayed graphs can be selected by pressing the numeric representation of the channel value (in the right-hand side of the screen). Unselected channels are displayed in grey colour.
Display unit can be selected by pressing the unit-selection button in the top-lef corner of the main frame. User can select between temperature display in ${ }^{\circ} \mathrm{C}, \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$. Relative humidity is displayed separately in \%rh. To switch the graph to display relative humidity, select RH in the numeric representation of channels and/or use long touch on the unit-selection button.
Graph can use auto scaling or manual scaling. Scale limits can be adjusted manually by pressing the first or last label (scale limit) in the graph scale. A dialog will appear and a new value can be entered. Entering a manual scale limit automatically disables auto scaling for the particular scale limit. Auto scaling can be enabled by performing a long touch on the selected scale limit.
Auto scaling indicator is the small green indicator, located on the inner side of the scale limit label. If auto scaling is enabled for the particular scale, the auto scaling indicator will turn bright green.

Graph scale can be adjusted directly on the graph using the ZOOM menu button. The user must select two corner points within the graph and the graph will be zoomed between the nearest possible points, as determined by graph resolution. The exact zooming area is indicated by region which is not painted with red border. You may choose not to zoom for a particular scale limit, in this case you must select the corner point outside the graph area.
Auto scaling for all four scale limits can be enabled by applying a long touch to the ZOOM menu command. This is particularly useful for graph initialization, as the measurements may be initially displayed outside of the screen area.
Graph can be configured in the rolling display mode. In this mode, a fixed time span is presented in the graph and each new acquired readings shifts the graph data to the left, so the oldest readings fall of the graph. To configure the rolling display mode, first enable the auto scale for the upper limit of the time scale. Then adjust the lower limit of the time scale, so that a suitable time span is presented on the graph. This can be achieved either manually or by using the ZOOM function. Then use a long touch on the lower limit of the time scale. The auto scaling indicator will turn blue in order to indicate rolling display mode.
All graph readings can be cleared using the CLEAR menu button. Note that this operation will clear the readings on the graph and reinitialize the measurement statistics and graph auto scale limits, but readings will remain stored in the UT-ONE non-volatile memory.
Graph can display up to 3 months of readings at the same time. If you try to adjust the scale limits beyond this limitation, the scale adjustment will be truncated.
Displaying very large data sets on the graph will result in slower response/redraw time.
The right-hand side of the main frame displays the data in numeric format. Data is presented for each of the seven measurement channels. Numeric display can present the last measured value, as well as some statistics and uncorrected raw measured value. The header button above the numeric data can be used to change the type of displayed numeric values:

- LAST READING displays the last acquired reading for each channel
- MIN READING displays the smallest acquired reading for each enabled channel
- MAX READING displays the largest acquired reading for each enabled channel
- MAX - MIN displays the difference between the largest and smallest acquired reading for each enabled channel
- DIFFERENCE displays the difference between the last value of the selected reference channel and other two (difference) channels. Reference channel can be selected by using a long touch on the numeric representation of the channel value. Reference channel is marked with letter C and difference channels are marked with letter D .
- RAW READING displays the uncorrected raw value for the last acquired reading for each enabled channel. Note that for main channels, raw reading is presented in ohms for resistance thermometers and microvolts for thermocouples, while for the ambient channels it is presented in ${ }^{\circ} \mathrm{C}$ or $\%$ rh.
If a channel is disabled, the numeric display will display a " * "character. Note that main channels are enabled manually in the Main Channels Configuration window on the Configure page, while ambient probes are enabled automatically after the probe is detected. Disabled channels do not affect the statistics and graph presentation.
If a channel is enabled, but the reading is erroneous due to wrong connection, wrong configuration or out-of-range condition, the numeric display will display " ERROR! " message. Check your probe, connection and configuration to correct this condition. Erroneous readings do not affect the statistics and graph presentation.
Using a short touch on the numeric value of the particular channel will enable the display of the particular channel on the graph. Note that disabling the display on the graph has no effect on measurement of the particular channel. Channels with the enabled display are drawn in colour, while the channels with disabled display are drawn in grey.
Using a long touch on the numeric value of the particular main channel acts as a shortcut to the configuration window for the selected main channel.

UT-ONE B03B

3-Channel Thermometer Readout

The resolution of the numeric display can be adjusted using the DIGITS menu button. A short touch on the DIGITS menu button will cycle through resolution from 0 to 4 decimal places. Reduced resolution is useful for measurements with unstable or fast-changing readings, were last digits are irrelevant and only distract the user. Note that for ambient probes, full resolution is limited to 2 decimal places.
A long touch on the DIGITS buttons will display the alternative colour scheme, which has a black background. Alternative colour scheme is functionally identical to basic colour scheme and is simply a matter of user preference.

Figure 16: Alternative colour scheme (relative humidity, reduced numeric resolution)

3.3.2 Graph view

Graph measurement view presents the data in graphic format only, using the entire main frame. Functionality is very similar to functionality of graph presentation in mixed measurement view. Note that some functions, such as the enabling of the display of graphs for individual channels can only be made in mixed view and applies identically to both views.

Figure 17: Graph view

3.3.3 Numeric view

Numeric measurement view presents the data in numeric format using large font, which is clearly visible from larger distance. This view can show either temperatures from main channels C1, C2 and C3, or readings from the external ambient probe (channels RH, TA and TD). The displayed set of channels can be selected using the MAIN / AMBIENT menu button.

Figure 18: Numeric view

3.3.4 Channel view

Channel measurement view displays the extended information for the measurements on the selected channel. Available channels C1, C2, C3, RH, TA, TD and TJ can be selected using the tabs in the main frame of the window. This view displays a large indicator with the temperature or relative humidity for the selected channel. Under the large indicator, there are four smaller indicators displaying minimum reading, maximum reading, difference between maximum and minimum reading and uncorrected raw reading for the selected channel. This is similar to statistics in the mixed view window.
In the bottom of the main frame, the name of the currently used probe is displayed. Using a long touch on the probe name or on the large indicator will display configuration window for the selected main channel.

Figure 19: Channel view

3.4 Configuration page

Configuration page consists of eight windows, which are used for viewing and changing UT-ONE configuration and parameters. Configuration can be selected using the CONFIGURE page selector. Individual windows can be scrolled by repeatedly pressing the CONFIGURE page selector or MORE... menu button. Long touch on the CONFIGURE page selector or MORE... menu button will select the first configuration window (Main Channels Configuration).
Configuration page supports three levels of access, which enables the user to lock some of the features of the UT-ONE configuration from unauthorized/accidental modification. Change of access levels is password protected and can be performed in the Access Level configuration window.

3.4.1 Main Channels Configuration

Main channels of the UT-ONE thermometer are channels C1, C2 and C3 and are used for measurement of resistance probes and thermocouples. Each of the main channels can be configured independently in the Main Channels Configuration window on the Configuration page.
Changing channel configuration requires Configuration or Calibration access level. If you are currently in User access level, input boxes are grey and disabled. Use the ACCESS menu button to enter password for the configuration access level to unlock channel configuration.

Figure 20: Main Channels Configuration
Main channel configuration window consists of five parameters:

- Probe parameter determines the resistance probe/thermocouple that is connected to the specified channel. Note that you may use a predefined set of probe using standard parameters, as well as user defined probes with particular parameters, which were obtained during probe calibration. Probe parameter determines the equation type and coefficients, which are used to transform measured resistance/emf to probe temperature.
To change probe, touch the probe input box to select (input box background turns white) and use PREV and NEXT menu buttons to scroll through probe list. Long touch will select the first user or predefined probe. The same functionality can be achieved by touching the left-hand side or right-hand side of the probe input box.
- Range parameter determines the resistance/emf measurement range for the selected channel. After the probe is selected/changed, UT-ONE automatically selects the optimum measurement range for the given probe type, as well as limits the manual selection to resistance or emf ranges. In most practical cases, use of auto range is recommended, however you can also set the range manually.
- Status parameter determines if the channel is enabled and therefore included in the acquisition sequence. If channel is not used or probe is not connected to channel connectors, you should disable it to prevent erroneous readings and to speed up the acquisition sequence.
- Current parameter determines the value of the measurement current for the measurement of resistance probes (for thermocouples, this parameter is not applicable). You may choose between two values of measurement current: NORMAL value is 1 mA for PRT ranges and $10 \mu \mathrm{~A}$ for thermistor ranges, while REDUCED value is 0.707 mA for PRT ranges and $7.07 \mu \mathrm{~A}$ for thermistor ranges. You should always use NORMAL current to achieve best measurement result, while REDUCED current is used only for determining the self-heating error.
- Rate determines the time for the acquisition of a single reading on the selected channel. Acquisition rate can be set in the range from 1 second to 240 seconds with 2 second resolution. Using larger values for acquisition rate will perform averaging of internal readings and therefore reduce the scatter of readings (improve effective resolution), but it will decrease the refresh rate of the displayed measurements.
- Connection determines the type of connection of the thermometer probe. For PRTs and thermistors, the default connection is always 4 -wire. You may manually change to 3 -wire or 2wire and connect the probe accordingly. Note that measurement using 3 -wire or 2 -wire connection will result in deterioration of accuracy. For thermocouple, the default connection is the connection of a thermocouple to the thermocouple connector (or equivalently to voltage connectors). You may manually change the connection to TC AUX and connect the thermocouple to current connectors. This will not influence the accuracy.
When you change any of the channel parameters, changes are not applied immediately, but a green SAVE menu button and red CANCEL menu button are displayed. Changes are committed to the acquisition sequence only if you touch the SAVE menu button. If you touch the CANCEL button, original channel parameters are restored. If you leave the channel configuration window, changes are not committed and are permanently lost.
If acquisition is running during the channel parameters change, the acquisition may be stopped and automatically restarted with new parameters. In this case, results from the interrupted measurement are discarded. Note that changing channel parameters during acquisition is allowed, but may result in a larger gap between acquired measurements.

3.4.2 Options

Options configuration window is used to view/set various options and parameters of the UT-ONE thermometer. Options are grouped in three tabbed pages, which include Power options, Time option and Info options. Use tabs to select each of the tabbed pages.

Power options display the information about the internal rechargeable Li-ion battery, power source and power saving options.
Battery Voltage and Battery State of Charge determine the available capacity of the Li-ion battery. Note that battery state of charge is a more accurate (numeric) representation of the battery indicator. Note that battery voltage and state of charge for a fully charged battery may be slightly higher than nominal $4,2 \mathrm{~V}(100 \%)$ for a fully charged Li-ion battery. This is within the 1% accuracy of the charger and battery monitor. Voltages higher than 4.25 V are not acceptable and require a service intervention.
Battery Charge Cycle displays the count of discharge and recharge cycles of the Li-ion battery. One cycle is defined as discharge and recharge for at least 40% of full capacity. Note that the battery is rated for 500 charge cycles, but this number is very dependable on operating conditions. Note also that battery full capacity slowly decreases with increasing number of charge cycles.
Source parameter determines the current power source, which can be either EXTERNAL (external adapter or USB bus) or BATTERY.
Screensaver parameter determines the timeout before the display starts displaying the UT-ONE screensaver. Timeout is set in minutes, use 0 to disable the screensaver feature. Timeout is reset with any touch activity. Use of screensaver is recommended for applications where display is displaying a constant image for prolonged time periods, as this may result in permanently burned-in image. Note
that using a screensaver will not decrease power consumption. You can enter the screensaver mode immediately by touching the SCRSVR menu button.
Sleep parameter is similar to screensaver, but in this case UT-ONE enters sleep mode, in which display enters a low power mode, reducing the total power consumption by over 60%. Measurements can be normally acquired and logged in sleep mode.
To exit screensaver and sleep mode touch screen. In sleep mode, screen touch is sampled in 5 second intervals, so a longer constant touch may be required.

Figure 21: Power options

Figure 22: Screensaver

UT-ONE B03B

3-Channel Thermometer Readout

Time options displays the current time and date of the UT-ONE real time clock. User can touch the SET menu button to correct the current time. Use the FORMAT menu button to select preferred date format. The selected date format will be used in all display windows.

Figure 23: Time options
Info options display the serial, production and measurement modul number, as well as firmware version and CRC coded calculated from main processor firmware. This information is useful for traceability and support.

Figure 24: Info options

3.4.3 Access Level

UT-ONE has three access levels, which are used to secure the configuration, calibration and internal data from accidental or unauthorized access. Access level can be changed by selecting the corresponding tabbed page. Increasing the access levels require that you enter a password. There are three access levels:

- User Access is used for normal operation (measurements of temperature). User cannot change configuration and calibration parameters. No password is required.
- Configuration Access is used for configuring the UT-ONE channels with particular thermometer probes and measurement ranges. Password is 207. This access level is retained after the UTONE is restarted. If required, changed to User access manually after the configuration is complete.
- Calibration Access is used for changing calibration parameters, such as user probe data and reference values for measurement ranges. Password is 42849. After the UT-ONE is restarted, the access level is automatically decreased to Configuration level.

3. Access Level

3. Access Level
User Config Calibr You are in Configuration access level. You can make measurements and change configuration. To lock current configuration, enter User access level. To change probe and device calibration coefficients, enter Calibr access level. Passwords are specified in User manual.

MORE...
Figure 25: Access Level

Figure 26: Entering a password using the numeric keyboard

3.4.4 Probe List

Probes List configuration window allows the reviewing and configuration of user-defined, predefined and ambient probes. Note that in order to enter Probe List window, access level must be set to calibration.
User-defined probe list consists of 20 locations, where user can enter its own probes with particular coefficients, which can be later selected in the Main Channels Configuration window. Use the scrollbar on the right-hand side to scroll through all 20 locations. Touch a location to select it, selected location will be displayed with white background. Use DELETE menu button to permanently delete the selected user-defined probe. Use the EDIT menu button to view/change probe parameters.

Figure 27: User-defined probe list
Predefined probe list is similar to user-defined list, but for predefined probes you can only view parameters, you can't change or delete them.

Fïgure 28: Ambient probe líst
Ambient probe list displays probes for ambient channels, which include external ambient probe (relative humidity RH and air temperature TA), internal cold-junction thermometer TJ and internal ADC thermometer TI. Note that each ambient channel has exactly one linked probe, which cannot be selected from a list of probes, as in the case of main channels.

3-Channel Thermometer Readout

Note that temperature measured with ADC thermometer (TI) is used for internal temperature compensation of main channels, so using wrong ADC thermometer coefficients may result in erroneous readings of main channels.
Probe data is viewed/changed in Edit Probe Data dialog. Touch the parameter input box to select it and touch CHANGE menu button to change. Changes are made in a text or numeric data editor.

Figure 29: Edit Probe Data dialog
Editing the probe name will open the text data editor. Probe name can be up to 20 characters long and may consist of any available character.

Figure 30: Text data editor
Editing the probe type will display the Probe type label and the associated conversion function. You may use the PREV and NEXT menu buttons to scroll through available probe types. Note that after a new probe type is selected, the labels of the probe coefficients are automatically adapted.

Figure 31: Probe type selection
Editing probe numeric coefficients will display a numeric keyboard, which allows the entry of numbers in floating point format with 12 decimal digits and exponent in range from -99 to 99.

Figure 32: Numeric data editor

3.4.5 Measurement Range List

Measurement range list window is used for reviewing and configuring calibration coefficients for measurement ranges. UT-ONE B03B features 35 measurement subranges:

- RA: Auto Range Pt-100, Normal current (virtual range, no coefficients)
- R1: Manual range 25Ω, Normal current
- R2: Manual range 50Ω, Normal current
- R3: Manual range 100Ω, Normal current
- R4: Manual range 200Ω, Normal current
- R5: Manual range 400Ω, Normal current
- R6: Manual range 800Ω, Normal current
- HA: Auto Range Thermistor, Normal current (virtual range, no coefficients)
- H1: Manual range $2.5 \mathrm{k} \Omega$, Normal current
- H2: Manual range $5 \mathrm{k} \Omega$, Normal current
- H3: Manual range $10 \mathrm{k} \Omega$, Normal current
- H4: Manual range $20 \mathrm{k} \Omega$, Normal current
- H5: Manual range $40 \mathrm{k} \Omega$, Normal current
- H6: Manual range $80 \mathrm{k} \Omega$, Normal current
- EA: Auto Range Thermocouple (virtual range, no coefficients)
- E1: Manual range 15 mV
- E2: Manual range 30 mV
- E3: Manual range 60 mV
- E4: Manual range 125 mV
- E5: Manual range 250 mV
- E6: Manual range 500 mV
- rA: Auto Range Pt-100, Reduced current (virtual range, no coefficients)
- r1: Manual range 25Ω, Reduced current
- r2: Manual range 50Ω, Reduced current
- r3: Manual range 100Ω, Reduced current
- r4: Manual range 200Ω, Reduced current
- r5: Manual range 400Ω, Reduced current
- r6: Manual range 800Ω, Reduced current
- hA: Auto Range Thermistor, Reduced current (virtual range, no coefficients)
- h1: Manual range $2.5 \mathrm{k} \Omega$, Reduced current
- h2: Manual range $5 \mathrm{k} \Omega$, Reduced current
- h3: Manual range $10 \mathrm{k} \Omega$, Reduced current
- h4: Manual range $20 \mathrm{k} \Omega$, Reduced current
- h5: Manual range $40 \mathrm{k} \Omega$, Reduced current
- h6: Manual range $80 \mathrm{k} \Omega$, Reduced current
- h7: Manual range $160 \mathrm{k} \Omega$, Reduced current (auxiliary range, available only in single-reading mode, not subject to accuracy specification)

Auto ranges are virtual ranges which instruct the UT-ONE B03B to select one of the possible six associated manual subranges. Auto ranges have no coefficients associated to them.
Each manual subrange is associated with three parameters:

- Reference value is obtained in UT-ONE B03B calibration and user may adjust it to compensate instrument drift. This value also indicates the exact value of instrument overrange.

3-Channel Thermometer Readout

- Linearity correction compensates the linearity error for the particular range. Measurement of this parameter requires dedicated equipment and procedures and may not be performed by the user.
- Temperature coefficient compensates the temperature drift for the particular range. Measurement of this parameter requires dedicated equipment and procedures and may not be performed by the user.

IMPORTANT!

Changing the reference value directly affects measurement accuracy and traceability of the instrument!

Use PREV and NEXT menu button to scroll through the list of manual measurement ranges. Use CHANGE menu button to change the reference value for the currently selected measurement range.
Note that reference value is immediately stored in the volatile memory of the UT-ONE BO3B and measurements are immediately using the new value. This feature is useful for verifying the new reference value before committing changes to UT-ONE B03B non-volatile memory. Switching to other windows will not discard changes to reference value. Values in volatile memory are lost after UT-ONE B03B power down.
Use red CANCEL menu button to discard all changes to reference value and reload existing values from nonvolatile memory. Use green SAVE button to commit changes to non-volatile memory.

Figure 33: Measurement Range List

3.4.6 Touch Screen Calibration

Touch screen resistive element may drift with time, so user may have to perform a recalibration of the touch screen. Touch the TEST menu button to test the accuracy of the current touch screen calibration. It is recommended that you use a stylus pen to perform testing and calibration of the touch screen.
If calibration is required, touch the CALIBR menu button. A circular target will be displayed in the lower left corner of the screen. Touch and hold the centre of the target until OK is displayed. Repeat the procedure for the target in upper right corner. Calibration is now complete, but the coefficients are not yet permanently stored. You may use the TEST function to verify that calibration was successful. If calibration is correct, touch the SAVE menu button to permanently store the touch calibration coefficients. You will have to verify the calibration by repeating the touching of two corner targets. If verification is successful new touchscreen calibration is stored in non-volatile memory.

Figure 34: Touch screen calibration window

3.4.7 Communication Interfaces

Communication Interfaces window displays the information about the installed communication interfaces for communication with a computer. UT-ONE B03B has two communication interfaces:

- Serial (RS232) interface is a simple and reliable interface for slow communication over longer communication cables. Communication parameters are displayed in this view. Parity is fixed to odd parity, each character has 8 bits and you can use one or two stop bits. Default baud rate is 38400 bauds. You can touch the baud rate input box to change the baud rate and use green SAVE button to save to non-volatile memory. The new baud rate will become effective after the UT-ONE B03B is restarted. Available data rates are 300, $600,1200,2400,4800,9600,19200$, $38400,56000,57600,115200,128000,230400$ and 250000 bauds. Use lower baud rates if you are using long communication cables in a noisy environment and the communication is not reliable.
- USB interface is the most commonly used interface in modern computers and provides fast communication over a limited cable length. Note that UT-ONE B03B can also be powered from the USB interface. Basic communication parameters are displayed in this view. Communication is compliant with USB 2.0 full speed at 12 Mbps . VISA resource name is the default name that is used in the LabVIEW drivers for USB RAW communication.

Figure 35: Communication interfaces

3.4.8 External Standards

UT-ONE supports the use of external standards, which can be used to eliminate internal short-term and long-term drifts and therefore improves accuracy of the measurement. Note that external standards are only applicable with single reading measurements, initiated over communication interface.
To set-up external-standard parameters, first select the page for the channel, on which the external standard will be connected. Then touch the parameter input box to select and touch CHANGE menu button to modify it.

- Name input box contains a user-defined label for the external standard. Name is limited to 20 characters.
- Range input box specifies the type of external references. Valid options are "Pt-100 ranges", "Thermistor ranges", "Thermocouple ranges" and "Not defined". The last option effectively disables the external reference on selected channel. Note that external-standard range must much the range specified in a single reading measurement, otherwise single reading measurement will return E2 error.
- Reference input box specifies the exact value of the external standard, as obtained in its calibration certificate.

3-Channel Thermometer Readout

- Temperature C. input box specifies the temperature coefficient of the external reference. UTONE internally measures ambient temperatures and automatically corrects the reference value of the external standard. This correction is only applicable, if the external standard is placed near the UT-ONE unit at approximately the same ambient temperature. If external standard is stabilized at constant temperature, enter zero for temperature coefficient. This will effectively disable temperature correction of the external standard. Temperature coefficient is specified relatively per ${ }^{\circ} \mathrm{C}$. For example $2.8 \mathrm{E}-7$ is equal to $0.28 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
After you set all parameters, touch the green SAVE button to store external-standard configuration to non-volatile memory. Touching red CANCEL button or changing the page/window will discard all changes.

Figure 36: External Standards

4 Probe Characterization

UT-ONE provides all commonly used coefficients and equations to convert measured resistance or emf to temperature. UT-ONE has internal non-volatile memory for storage of coefficients for up to twenty user-defined probes and has 29 predefined coefficients for standard probe types.
User-defined probes and their coefficients can be reviewed and changed in the Probes List configuration window in the UT-ONE user interface. Alternatively, user-defined probes can be managed using the remote interface commands.
Alternatively, user may choose to ignore the internal conversion functions and use retrieve the raw values of resistance or emf via the remote interface. In this case, conversion to temperature is performed in dedicated software on a computer, independently of the UT-ONE.

4.1 Data structure

Probe characterization for both user-defined and predefined probe coefficients are stored in a data structure in binary format. Size of the data structure is 128 bytes. Data structure for probe coefficients consists of:

- Probe name (20 bytes)

Probe name describes the probe in unique and user-friendly manner. Probe name may consist of probe model, manufacturer, serial number, certificate number, or it can be a functional description of the probe. If probe name is less than 20 characters long, append space characters up to the size of 20 . There is no terminating zero character.

- Probe type (2 bytes)

Probe type describes the type of the conversion equation used for calculation of the true temperature. Available probe types are PP, PC, PI, NS, NE, TK, TJ, TT, TE, TN, TS, TR and TB.

- Coefficients (6*8 bytes)

Coefficients are the numeric parameters of the conversion equation for the particular probe type. Data structure supports up to six numeric parameters, but some of them may be fixed to zero and ignored, depending on the selected probe type. Coefficients are stored as floatingpoint numbers in packed binary-coded-decimal format (BCD format). Each BCD number consists of a mantissa with 12 decimal digits, a sign character and an exponent in the range from -99 to 99.

- Reserved (56 bytes)

This section is reserved for future upgrades.

- Cyclic redundancy code CRC (2 bytes)

This is an error checking signature, which ensures data integrity of the entire data structure.

4.2 Probe types

UT-ONE supports the measurement with platinum resistance thermometers, thermistors and thermocouples by measuring their resistance or emf. The conversion of resistance/emf to temperature is performed using the conversion equation. Note that there can be several different types of conversion equation available for a particular probe and the users may choose which fits their purpose.

4.2.1 PP: PRT polynomial

PRT polynomial is a simple polynomial equation that converts the resistance of a platinum resistance thermometer to temperature. This type of conversion equation is commonly used for industrial-grade PRTs. Ro coefficient is also known as the resistance of a PRT at ice point $\left(0^{\circ} \mathrm{C}\right)$ and can be used as a measure of PRT stability between the successive calibrations. Conversion equation supports polynomials up to fifth order, but often the coefficients of up to second or third order are sufficient. In this case, set the rest of the coefficients to 0 .

$$
\begin{aligned}
& \text { PP: PRT Polynomial } \\
& \begin{aligned}
R(t) & =\mathrm{R}_{0} \cdot\left(1+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}+\right. \\
& \left.+\mathrm{a}_{4} \cdot t^{2}+\mathrm{a}_{5} \cdot t^{t}\right)
\end{aligned}
\end{aligned}
$$

Figure 37: Conversion equation for PP probe type

4.2.2 PC: PRT CVD

PRT CVD is a Callendar-Van Dusen equation that converts the resistance of a platinum resistance thermometer to temperature. This type of conversion equation is commonly used for industrial-grade PRTs. This equation is similar to PRT polynomial equation, but it has an additional conditional parameter for temperatures below $0^{\circ} \mathrm{C}$. If thermometer is calibrated only at temperature above $0^{\circ} \mathrm{C}$, set the coefficient C to 0 . Rocoefficient is also known as the resistance of a PRT at ice point ($0^{\circ} \mathrm{C}$) and can be used as a measure of PRT stability between the successive calibrations. Coefficient D is rarely used, but it improves the accuracy at high temperatures. If D is not used, set it to 0 .

> PC: PRT CVD $\begin{aligned} R(t) & =\mathrm{R} \cdot \cdot\left(1+\mathrm{A} \cdot t+\mathrm{B} \cdot t^{2}+\mathrm{C} \cdot(t-100)\right. \\ & \left.\cdot t^{3} \cdot(t<0)+\mathrm{D} \cdot t^{3}\right)\end{aligned}$

Figure 38: Conversion equation for PC probe type

4.2.3 PI: SPRT ITS-90

SPRT ITS-90 is a set of equations, defined by the International Temperature Scale of 1990 (ITS-90), which converts the resistance of a standard platinum resistance thermometer (SPRT) to temperature. Consult the ITS-90 definition for applicability and usage of this equation type. ITS-90 defines several conversion equations for particular temperature ranges, but UT-ONE supports only two of the most
commonly used temperature ranges. The low temperature range is used for temperatures from the triple point of argon $\left(-189.3442^{\circ} \mathrm{C}\right)$ up to the triple point of water $\left(0.01^{\circ} \mathrm{C}\right)$. The high temperature range is used for temperatures from triple point of water $\left(0.01^{\circ} \mathrm{C}\right)$ up to freezing point of aluminium $\left(660.323^{\circ} \mathrm{C}\right)$. Note that the thermometer can also be calibrated in a narrower range, in this case set the appropriate coefficients to zero. RTpw coefficient is the resistance of the SPRT in the triple point of water and can be used as a measure of SPRT stability between the successive calibrations.
UT-ONE does not perform any internal self-heating correction procedure. It is recommended, that during calibration coefficients are calculated for resistance at 1 mA current (and not for 0 mA current). If coefficients are available only for 0 mA current, a reasonable approximation is to add the value of self-heating for 1 mA at triple point of water to the RTpw coefficient.

> PI: SPRT ITS-90
> $W=R(t) /$ RTPW $_{\text {Trw }}$
> $W-W_{R}=\mathrm{a}_{4} \cdot(W-1)+\mathrm{b}_{4} \cdot(W-1) \cdot \ln (W)$ $W-W_{R}=\mathrm{a}_{8} \cdot(W-1)+\mathrm{b}_{8} \cdot(W-1)^{2}+$ $\quad+\mathrm{c}_{8} \cdot(W-1)^{3}$

Figure 39: Conversion equations for PI probe type

4.2.4 NS: NTC Steinhart-Hart

NTC Steinhart-Hart is a standard conversion equation for negative-temperature-coefficients thermistors. Note that temperature T in the equation has the unit kelvin.

> NS: NTC SH
> $1 / T=A+B \cdot \ln (R)+C \cdot \ln (R)^{3}$

Figure 40: Conversion equation for NS probe type

4.2.5 NP: NTC Polynomial

NTC polynomial is a generalized form of the Steinhart-Hart equation. It features polynomial of up to fifth order which permits better fitting accuracy than Steinhart-Hart equation. Note that temperature T in the equation has the unit kelvin.

$$
\begin{aligned}
& \text { NP: NTC Polynomial } \\
& \begin{array}{l}
1 / T=\mathrm{a}_{0}+\mathrm{a}_{1} \cdot \ln (R)+\mathrm{a}_{2} \cdot \ln (R)^{2}+ \\
\quad+\mathrm{a}_{3} \cdot \ln (R)^{3}+\mathrm{a}_{4} \cdot \ln (R)^{4}+\mathrm{a}_{5} \cdot \ln (R)^{5}
\end{array}
\end{aligned}
$$

Figure 41: Conversion equation for NP probe type

4.2.6 NE: NTC exponential

This is the simplified version of the Steinhart-Hart equation, where coefficient C is equal to zero. This equation is useful only for relatively narrow temperature ranges, otherwise the conversion error may become too large.

NE: NTC exponential

$R=$ alpha $\cdot \exp (b e t a / T)$

Figure 42: Conversion equation for NE probe type

4.2.7 TK: Thermocouple Type K

TK is a deviation function for the thermocouple of type K. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-200^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$.

> TK: TC Type K
> $E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)=$
> $=\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}$

Figure 43: Conversion equation for TK probe type

4.2.8 TJ: Thermocouple Type J

TJ is a deviation function for the thermocouple of type J. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-200^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$.

TJ: TC Type J
$E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)=$
$=\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}$

Figure 44: Conversion equation for TJ probe type

4.2.9 TT: Thermocouple Type T

$T T$ is a deviation function for the thermocouple of type T. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-200{ }^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { TT: TC Type T } \\
& E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)= \\
& =\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}
\end{aligned}
$$

Figure 45: Conversion equation for TK probe type

4.2.10 TE: Thermocouple Type E

TE is a deviation function for the thermocouple of type E. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-200{ }^{\circ} \mathrm{C}$ to $1000{ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { TE: TC Type E } \\
& E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)= \\
& =\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}
\end{aligned}
$$

Figure 46: Conversion equation for TE probe type

4.2.11 TN: Thermocouple Type N

TN is a deviation function for the thermocouple of type N. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-200{ }^{\circ} \mathrm{C}$ to $1300{ }^{\circ} \mathrm{C}$.

TN: TC Type N

$$
E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)=
$$

$$
=\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}
$$

Figure 47: Conversion equation for TN probe type

4.2.12TS: Thermocouple Type S

TS is a deviation function for the thermocouple of type S. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-50^{\circ} \mathrm{C}$ to $1768^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { TS: TC Type S } \\
& E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)= \\
& =\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}
\end{aligned}
$$

Figure 48: Conversion equation for TS probe type

4.2.13 TR: Thermocouple Type R

TR is a deviation function for the thermocouple of type R. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $-50^{\circ} \mathrm{C}$ to $1768^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { TR: TC Type R } \\
& E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)= \\
& =\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}
\end{aligned}
$$

Figure 49: Conversion equation for TS probe type

4.2.14 TB: Thermocouple Type B

TB is a deviation function for the thermocouple of type B. Deviation function is given as the difference between the measured emf and the emf reference function according to IEC 60584-1 for the particular thermocouple type. Cold junction of measured and reference emf is at $0^{\circ} \mathrm{C}$. If cold junction of the measured thermocouple is not at $0^{\circ} \mathrm{C}$, measured emf is corrected for the difference between $0^{\circ} \mathrm{C}$ and cold junction temperature. Conversion is valid in the temperature range from $300^{\circ} \mathrm{C}$ to $1820^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { TB: TC Type B } \\
& E(t)+E_{n}\left(t_{0}\right)-E_{n}(t)= \\
& =\mathrm{a}_{0}+\mathrm{a}_{1} \cdot t+\mathrm{a}_{2} \cdot t^{2}+\mathrm{a}_{3} \cdot t^{3}
\end{aligned}
$$

Figure 50: Conversion equation for TB probe type

4.3 Ambient probes

UT-ONE features three additional ambient probes. The internal thermometer on channel TJ is used for the cold-junction compensation for thermocouple measurements. The internal thermometer on channel TI is used for the temperature compensation of resistance and emf readings. The optional external combined probe for relative humidity and air temperature on channels RH and TA is used primarily for monitoring ambient conditions. All ambient probes have a direct indication in temperature or relative humidity, but to improve the accuracy, a deviation function obtained in calibration can be entered in UT-ONE.

4.3.1 Relative humidity deviation function

Relative humidity deviation function is applicable to channel RH of the external combined probe. UTONE implements the relative humidity function with up to six coefficients, which can provide excellent accuracy over wide temperature and relative humidity range. In most applications, especially if the combined probe is used only for monitoring ambient conditions in a laboratory, a linear deviation function with coefficients a_{0} and a_{1} is sufficient. In this case, set the unused coefficients to zero.

$$
R H-R H_{R A W}=a_{0}+a_{1} \cdot R H+a_{2} \cdot R H^{2}+a_{3} \cdot t+a_{4} \cdot t \cdot R H+a_{5} \cdot t \cdot R H^{2}
$$

4.3.2 Temperature deviation function

Temperature deviation function is applicable to channels TA of the external combined probe, TJ of the internal CJC thermometer and TI of the internal ADC thermometer. UT-ONE implements the temperature deviation function with up to four coefficients, which can provide excellent accuracy over wide temperature range. In most applications, especially for monitoring ambient conditions in a laboratory or for cold junction compensation, a linear deviation function with coefficients a_{0} and a_{1} is sufficient. In this case, set the unused coefficients to zero.

$$
t-t_{R A W}=a_{0}+a_{1} \cdot t+a_{2} \cdot t^{2}+a_{3} \cdot t^{3}
$$

5 Remote Communication Interface

Remote communication interface can be used to control the UT-ONE device from a computer using the USB or RS232 interface. Remote interface operation has no effect on the device measurement capabilities and both interfaces can be accessed independently at maximum supported speed.

5.1 USB interface

USB interface is a fast and reliable communication protocol, readily available on most personal computers. UT-ONE USB interface is compatible with USB 2.0 standard and implements Full speed communication (12 Mbits/s).
For communication over the USB interface it is recommended to use the LabVIEW drivers provided by Batemika. These drivers internally implement the USB protocol, so the user can directly write and read messages from the UT-ONE device.
In case the user chooses to implement the USB driver in another programming language, use the following protocol parameters:

- Vendor ID:
$0 \times 03 E B$
- Product ID: 0xC147
- Manufacturer name: Batemika
- Model name: UT-ONE
- Serial number: unique for each device
- Transfer type: bulk transfer on endpoint 1

USB connector is located in the front side of the UT-ONE B03B. Connector is a standard 'B' receptacle. Connection cable must be a dedicated double screened USB 2.0 compatible cable with standard ' A^{\prime} plug on computer side and standard ' B^{\prime} ' plug on device side. Use of ferrite cores on the connection cable is recommended. Never use unshielded USB 1.1 compatible cables or cables exceeding 3 meters in length.
USB remote interface requires device driver installation after the device is connected to the computer for the first time. Use the *.inf file provided by the manufacturer to install support for LabVIEW drivers.
USB interface can also be used to power the UT-ONE device. Note that UT-ONE can require up to 500 mA of supply current, which is the standard limit for a single USB port. Note that some USB ports (especially on some laptop computers) may not be able to provide sufficient power. In this case, use an external USB hub with a separate power supply. Use of external hubs without separate power supply (bus powered) is not recommended.

Figure 51: USB connector on the front side of UT-ONE B03B

Figure 52: USB cable with two ferrite cores

5.2 RS232 interface

RS232 is a low-speed serial communication interface, popular in measurement devices due to its simplicity, robustness and reliability. Although RS232 interface is becoming less common on personal computers and especially laptops, low-cost USB-RS232 adapters are available.
RS232 inteface settings:

- Odd parity (configurable to none or even parity)
- 8 data bits
- 1 or 2 stop bit
- Baud rate is software selectable (300, 600, 1200, 4800, 9600, 19200, 38400, 56000, 57600, 115200, 128000, 230400 and 25000 baud)

Connection cable is a straight cable (not crossed or null-modem cable), also known as extension cable. Note that only pins 2, 3 and 5 are internally connected. Note that GND connection effectively connects the computer ground and the device digital ground. Use of dedicated cable with proper shielding and reasonable length is recommended. If a long cable is required, only three lines (2,3 and 5) are mandatory.

Figure 53: RS232 Cable wiring diagram

RS232 connector is located on the back side of UT-ONE B03B, just under the power supply and chassis ground connectors. Connector is the standard DB-9 female connector. Computers and most USB-RS232 adapters have a standard DB-9 male connector. The connection cable must therefore have one male and one female DB-9 connector. It is possible to connect several connection cables in series. Alternatively, a compatible USB-RS232 adapter may be connected directly to UT-ONE B03B without the use of additional connection cable.

Figure 54: RS232 connector on the back-side of UT-ONE B03B

Figure 55: RS232 connection cable

Figure 56: USB-RS232 adapter

5.3 HyperTerminal

HyperTerminal is an industry-standard tool for testing the communication via serial interface. UT-ONE supports HyperTerminal operation using a modified communication protocol. UT-ONE can automatically detect the use of HyperTerminal and change the termination character from LF to CR+LF. It also removes the timeout between the individual received characters, so user can type commands at any pace. Note that the first command over HyperTerminal is ignored, so that UT-ONE can internally switch to modified communication protocol.
HyperTerminal must be configured using the following settings:

Figure 57: HyperTerminal settings for communication with UT-ONE

Figure 58: HyperTerminal example

5.4 MODBUS Protocol Support

UT-ONE thermometer readout provides a limited support for communication using the MODBUS protocol via serial interface. This feature is primarily intended for connecting UT-ONE to PLC industrial controllers. MODBUS support is limited to basic configuration of communication parameters and reading of acquired measurements in continuous measurement mode. Use UT-ONE Command Set or UT-ONE Applications software to access full configuration and acquisition capabilities of the UT-ONE device.
This user manual provides only a basic description of the MODBUS protocol. For detailed description refer to "MODBUS Application Protocol Specification" available for free download at www.modbus.org.

5.4.1 MODBUS message structure

MODBUS defines a digital communication network to have one MASTER device (PLC or computer) and one or more SLAVE devices (UT-ONE). Note that when using RS232 communication interface, only one SLAVE device can be connected. Communication is always initiated by the MASTER device and only the addressed SLAVE device will reply.
UT-ONE only supports RTU mode of transmission.
Message frame format is presented in the following table:

Frame start	Device address	Function code	Data	CRC	End of transmision
----	1 byte	1 byte	n bytes	2 bytes	---

- Frame Start is a period of inactivity at least 3.5 times the single character transmission time
- Device address is a single-byte (8 bits) identifier unique to each slave device. Default UT-ONE device address is 1 , but it can be changed to any value between 1 and 247. Device address 0 is a special case that will broadcast a message to all slave device and slave device will not respond.
- Function code is a single-byte (8 bits) instruction to the slave describing the action to perform. UT-ONE supports function codes $3,4,6$ and 16 .
- Data segment if the message depends on the function code. Typically it will contain a parameter address, number of parameters and parameter data.
- CRC (Cyclic Redundancy Check) is an error-check code and is two bytes (16 bits) long. CRC polynomial is $0 \times A 001$ and initial value is $0 \times$ xFFFF.
- End of transmission is a period of inactivity 3.5 times the single-character transmission time. The EOT segment at the end of a message indicates to the listening device that the next transmission will be a new message.

5.4.2 Function codes

UT-ONE supports a minimal set of MODBUS function codes which enable writing and reading parameter values in the UT-ONE parameter table. Parameter values are 16-bit integer words, however more than one consecutive 16-bit parameter value can be combined to represent one data value.

- READ N WORDS (3 or 4)

Reads specified number of parameter values starting at specified parameter address.
Maximum of 32 16-bit parameter values can be read in a single message.
Command:

Device address	Function code 3 or 4	Starting address		Number of words to read	CRC		
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Response:

Device address	Function code 3 or 4	Number of bytes read	Value of first word		\ldots	Value of last word	CRC		
1 byte	1 byte	1 byte	MSB	LSB	\ldots	MSB	LSB	MSB	LSB

- WRITE A WORD (6)

Writes a single parameter value to the specified parameter address. Using a device address 0 will broadcast parameter value to all devices regardless of their device address.
Command:

Device address	Function code 6	Parameter address		Parameter value		CRC	
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Response:

Device address	Function code 6	Parameter address		Parameter value		CRC	
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

- WRITE N WORDS (16)

Writes N parameter values starting at the specified parameter address. Using a device address 0 will broadcast parameter values to all devices regardless of their device address.
Maximum of 32 16-bit parameter values can be written in a single message.
Command:

Device address	Function code 10	Starting address		Number of words		Number of bytes (N)	Data	CRC			
1 byte	1 byte	MSB	LSB	MSB	LSB	1 byte	N bytes	MSB		LSB	
:---											

Response:

Device address	Function code 10	Starting address		Number of words written		CRC	
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

5.4.3 MODBUS Parameter Table

MODBUS protocol is based on reading and writing parameter values in an addressable parameter table. Each parameter is a 16 -bit integer word (signed or unsigned). Several consecutive parameter words can be combined in a larger data type.
The following table lists all addressable parameters supported by UT-ONE. Parameters with R/W access can be read and written while parameters with R access can only be read (writing to the parameter will result in an error).

Address DEC	Address HEX	Description	Size	Access
1	0x0001	Continuous acquisition status ($0=$ Idle, 1 =Acquiring)	1 word	R/W
16	0x0010	Device address	1 word	R/W
17	0x0011	Baud rate $(0=300,1=600,2=1200,3=2400,4=4800,5=9600$, $6=19200,7=38400,8=56000,9=57600,10=115200,11=128000$, $12=23400,13=250000$)	1 word	R/W
18	0x0012	Parity ($0=$ No parity, $1=$ Odd parity, 2=Even parity)	1 word	R/W
256	0x0100	C1 temperature value in 16-bit integer format	1 word	R
257	0x0101	C2 temperature value in 16-bit integer format	1 word	R
258	0x0102	C3 temperature value in 16-bit integer format	1 word	R
259	0×0103	C4 temperature value in 16-bit integer format	1 word	R
260	0x0104	C5 temperature value in 16-bit integer format	1 word	R
261	0×0105	C6 temperature value in 16-bit integer format	1 word	R
262	0x0106	C7 temperature value in 16-bit integer format	1 word	R
263	0x0107	C8 temperature value in 16-bit integer format	1 word	R
264	0x0108	C9 temperature value in 16-bit integer format	1 word	R
265	0×0109	C10 temperature value in 16-bit integer format	1 word	R
266	0x010A	C11 temperature value in 16-bit integer format	1 word	R
267	0x010B	C12 temperature value in 16-bit integer format	1 word	R
320	0x0140	B1 raw value in 16-bit integer format	1 word	R
321	0x0141	B2 raw value in 16-bit integer format	1 word	R
322	0x0142	B3 raw value in 16-bit integer format	1 word	R
323	0x0143	B4 raw value in 16-bit integer format	1 word	R
324	0x0144	B5 raw value in 16-bit integer format	1 word	R
325	0×0145	B6 raw value in 16-bit integer format	1 word	R
326	0x0146	B7 raw value in 16-bit integer format	1 word	R
327	0×0147	B8 raw value in 16-bit integer format	1 word	R
328	0×0148	B9 raw value in 16-bit integer format	1 word	R
329	0×0149	B10 raw value in 16-bit integer format	1 word	R
330	0x014A	B11 raw value in 16-bit integer format	1 word	R
331	0x014B	B12 raw value in 16-bit integer format	1 word	R
384	0x0180	RH relative humidity value in 16-bit integer format	1 word	R
385	0×0181	TA temperature value in 16-bit integer format	1 word	R
386	0x0182	TD temperature value in 16-bit integer format	1 word	R
387	0×0183	TJ temperature value in 16-bit integer format	1 word	R
388	0x0184	TI temperature value in 16-bit integer format	1 word	R
448	0x01C0	BH relative humidity raw value in 16-bit integer format	1 word	R
449	0x01C1	BA temperature raw value in 16-bit integer format	1 word	R
450	0x01C2	BD temperature raw value in 16-bit integer format	1 word	R
451	0x01C3	BJ temperature raw value in 16-bit integer format	1 word	R
452	0x01C4	BI temperature raw value in 16-bit integer format	1 word	R
512	0x0200	C1 temperature value in 32-bit integer format	2 words	R

3-Channel Thermometer Readout

514	0x0202	C2 temperature value in 32-bit integer format	2 words	R
516	0x0204	C3 temperature value in 32-bit integer format	2 words	R
518	0x0206	C4 temperature value in 32-bit integer format	2 words	R
520	0x0208	C5 temperature value in 32-bit integer format	2 words	R
522	0x020A	C6 temperature value in 32-bit integer format	2 words	R
524	0x020C	C7 temperature value in 32-bit integer format	2 words	R
526	0x020E	C8 temperature value in 32-bit integer format	2 words	R
528	0x0210	C9 temperature value in 32-bit integer format	2 words	R
530	0×0212	C10 temperature value in 32-bit integer format	2 words	R
532	0x0214	C11 temperature value in 32-bit integer format	2 words	R
534	0x0216	C12 temperature value in 32-bit integer format	2 words	R
640	0x0280	B1 raw value in 32-bit integer format	2 words	R
642	0x0282	B2 raw value in 32-bit integer format	2 words	R
644	0x0284	B3 raw value in 32-bit integer format	2 words	R
646	0x0286	B4 raw value in 32-bit integer format	2 words	R
648	0x0288	B5 raw value in 32-bit integer format	2 words	R
650	0x028A	B6 raw value in 32-bit integer format	2 words	R
652	0x028C	B7 raw value in 32-bit integer format	2 words	R
654	0x028E	B8 raw value in 32-bit integer format	2 words	R
656	0x0230	B9 raw value in 32-bit integer format	2 words	R
658	0x0232	B10 raw value in 32-bit integer format	2 words	R
660	0x0234	B11 raw value in 32-bit integer format	2 words	R
662	0x0236	B12 raw value in 32-bit integer format	2 words	R
768	0x0300	RH relative humidity value in 32-bit integer format	2 words	R
770	0×0302	TA temperature value in 32-bit integer format	2 words	R
772	0x0304	TD temperature value in 32-bit integer format	2 words	R
774	0x0306	TJ temperature value in 32-bit integer format	2 words	R
776	0x0308	TI temperature value in 32-bit integer format	2 words	R
896	0x0380	BH relative humidity raw value in 32-bit integer format	2 words	R
898	0×0382	BA temperature raw value in 32-bit integer format	2 words	R
900	0x0384	BD temperature raw value in 32-bit integer format	2 words	R
902	0x0386	BJ temperature raw value in 32-bit integer format	2 words	R
904	0x0388	BI temperature raw value in 32-bit integer format	2 words	R
512	0x0400	C1 temperature value in Float32 format	2 words	R
514	0x0402	C2 temperature value in Float32 format	2 words	R
516	0x0404	C3 temperature value in Float32 format	2 words	R
518	0x0406	C4 temperature value in Float32 format	2 words	R
520	0x0408	C5 temperature value in Float32 format	2 words	R
522	0x040A	C6 temperature value in Float32 format	2 words	R
524	0x040C	C7 temperature value in Float32 format	2 words	R
526	0x040E	C8 temperature value in Float32 format	2 words	R
528	0x0410	C9 temperature value in Float32 format	2 words	R
530	0×0412	C10 temperature value in Float32 format	2 words	R
532	0x0414	C11 temperature value in Float32 format	2 words	R
534	0x0416	C12 temperature value in Float32 format	2 words	R
640	0x0480	B1 raw value in Float32 format	2 words	R
642	0x0482	B2 raw value in Float32 format	2 words	R
644	0x0484	B3 raw value in Float32 format	2 words	R
646	0x0486	B4 raw value in Float32 format	2 words	R
648	0x0488	B5 raw value in Float32 format	2 words	R
650	0x048A	B6 raw value in Float32 format	2 words	R

3-Channel Thermometer Readout

652	0x048C	B7 raw value in Float32 format	2 words	R
654	0x048E	B8 raw value in Float32 format	2 words	R
656	0x0430	B9 raw value in Float32 format	2 words	R
658	0x0432	B10 raw value in Float32 format	2 words	R
660	0x0434	B11 raw value in Float32 format	2 words	R
662	0x0436	B12 raw value in Float32 format	2 words	R
768	0×0500	RH relative humidity value in Float32 format	2 words	R
770	0x0502	TA temperature value in Float32 format	2 words	R
772	0x0504	TD temperature value in Float32 format	2 words	R
774	0x0506	TJ temperature value in Float32 format	2 words	R
776	0x0508	TI temperature value in 32 Float32 format	2 words	R
896	0x0580	BH relative humidity raw value in Float32 format	2 words	R
898	0x0582	BA temperature raw value in Float32 format	2 words	R
900	0x0584	BD temperature raw value in Float32 format	2 words	R
902	0x0586	BJ temperature raw value in Float32 format	2 words	R
904	0x0588	BI temperature raw value in Float32 format	2 words	R

5.4.4 Data formats

UT-ONE supports reading of temperature and raw-data values in three different numeric formats.

- 16-bit integer format is the simplest data format that stores the value in a single 16 -bit word with reduced accuracy and range. Numeric resolution is 0.01 and range is -327.67 to +327.67 . Values out of ranges are truncated to range limits. Readings are converted directly to numeric values regardless of unit.
Examples:

$$
\begin{aligned}
& 12412 \text { (} 0 \times 307 \mathrm{C} \text {) }=+124.12 \\
& -2334 \text { (0xF6E2) }=-23.34 \\
& 0 \text { (0x0000) }=0.00 \\
& 32767 \text { (0x7FFF) }=+327.67 \\
& -32767(0 \times 8001)=-327.67 \\
& -32768 \text { (} 0 \times 8000 \text {) = ERROR or EMPTY }
\end{aligned}
$$

- 32-bit integer format is the data format that UT-ONE uses to store readings to internal flash memory. The value in the 3 least significant bits determines the unit and resolution:
$0=$ temperature in kelvin with resolution 0.000001 K
1 = ERROR or EMPTY
$2=$ relative humidity in \%rh with resolution 0.000001 \%rh
$3=$ emf in $\mu \mathrm{V}$ with resolution $0.001 \mu \mathrm{~V}$
$4=$ resistance in ohm with resolution 0.0001 ohm
$5=$ resistance in ohm with resolution 0.00001 ohm
$6=$ resistance in ohm with resolution 0.000001 ohm
7 = resistance in ohm with resolution 0.0000001 ohm
Examples:
(0) $0728273456(0 \times 2 B 689230)=728.273456 \mathrm{~K}=455.123456{ }^{\circ} \mathrm{C}$
(0) $0268026544(0 x 0 F F 9 C 2 B 0)=268.026544 \mathrm{~K}=-5.123456^{\circ} \mathrm{C}$
(2) $0055120002(0 \times 03491082)=55.120000 \% r h$
(3) $0032566123(0 x 01 F 0 E B 6 B)=32566.120 \mu \mathrm{~V}$
(3) 4294151811 (0xFFF38E83) $=-815.488 \mu \mathrm{~V}$
(4) $1554441244(0 \times 5 C A 6 E 41 \mathrm{C})=155444.1240 \mathrm{ohm}$
(7) $1011234575(0 \times 3 C 46370 F)=101.1234568 \mathrm{ohm}$
(1) $0016843009(0 \times 01010101)=$ EMPTY
(1) $0033686017(0 \times 02020201)=$ ERROR
- Float32 is a single-precision floating-point format as defined in IEEE 754 standard. Float32 represents all UT-ONE temperature and raw-data readings with full precision and entire range. Float32 is most commonly used for advanced floating-point calculations in industrial controllers. Float32 is stored in 32 bits:

Sign	Exponent			Fraction	0
31	30	23	22		

The Float32 is stored in two consecutive words (example value 20.91):

Lower MODBUS address		Higher MODBUS address	
MSB	LSB	MSB	LSB
0×41	$0 \times A 7$	0×47	$0 \times A E$

```
Examples:
0x41A747AE = 20.91
0xC2FAE969 = -125.45588
0x4879AF8E = 255678.22
0x42C83F35 = 100.12345
0xFFFFFFFF = NaN (EMPTY or ERROR)
```


5.4.5 MODBUS Examples

Start acquisition by writing 1 to parameter at address 0×0001, device address 1 :

| Command: | 01 | 06 | 00 | 01 | 00 | 01 | 19 | CA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Response: | 01 | 06 | 00 | 01 | 00 | 01 | 19 | CA |

Stop acquisition by writing 0 to parameter at address 0×0001, device address 1 :

```
Command: 01 06 00 01 00 00 D8 0A
Response: 01 06 00 01 00 00 D8 0A
```

Set communication parameters (device address $=22$, baud rate $=9600$, parity=odd) by writing to three consecutive parameters starting at address 0×0001, device address 0 (broadcast to all connected devices regardless of device address):

```
Command: 00 10 00 10 00 03 06 00 16 00 05 00 01 7D 96
```

Response:
Read temperature value of channels C 1 and C 2 in 16-bit integer format. Device address is 1 . Acquired temperature values are $22.23^{\circ} \mathrm{C}$ and $21.95^{\circ} \mathrm{C}$.

```
Command: 01 03 01 00 00 02 C5 F7
Response: 01 03 04 08 AF 08 93 8F DF
```

Read temperature value of channels C 1 and C 2 in 32-bit integer format. Device address is 1. Acquired temperature values are $22.237344^{\circ} \mathrm{C}$ and $21.951616^{\circ} \mathrm{C}$.

Command: 01030200000445 B1
Response: 01030811 9B 40 D0 1196 E4 B0 1F 68
Read temperature value of channels C 1 and C 2 in Float32 format. Device address is 1. Acquired temperature values are $22.237345{ }^{\circ} \mathrm{C}$ and $21.951616^{\circ} \mathrm{C}$.

Command: 0103040000044539
Response: $010308 \mathbf{4 1} \mathbf{B 1} \mathbf{E 6} \mathbf{1 5} \mathbf{4 1} \mathbf{A F}$ 9C E9 6676

5.4.6 QModMaster Test Software

QModMaster is an industry-standard free-of-charge software for communication between a computer and a MODBUS serial device such as UT-ONE. QModMaster can be used for testing MODBUS communications and is a good starting point for troubleshooting or developing your own applications.
QModMaster is available for download at https://sourceforge.net/projects/qmodmaster/.

Figure 59: QModMaster software

Figure 60: QModMaster communication configuration (UT-ONE set to 9600 baud)

5.5 UT-ONE Command set

UT-ONE command set is the default command set used for communication with UT-ONE devices over communication interfaces. This command set is recommended for developing user applications and provides a complete interface to UT-ONE functionality.
UT-ONE command set is the same for all thermometer readouts from the UT-ONE family, but note that some commands are applicable only to particular UT-ONE models. For example, commands for streaming readings from the SD card are applicable only to models with a display, commands for setting GPIB parameters are applicable only to devices with GPIB option installed, etc.
Command set is identical for USB, RS232 and GPIB communication interfaces. However, RS232 and GPIB is considerably slower than USB, so commands involving transfer of large blocks of data are more suitable for USB communication interface.
Input and output communication buffers are 255 bytes long, so messages exciding 255 characters will result in a communication error.
USB interface can be used independently at the same time as the GPIB or RS232 interface. GPIB and RS232 share the same resources, so you can only use one of them at the same time. If you perform communication over one of them, make a communication pause of at least 200 ms before resuming communication with the other interface. UT-ONE will automatically start the communication on the activated communication interface.
Messages can be sent at any rate without affecting the device operation or accuracy of measurements. Always read the response message before starting the next command. Sending several concatenated command messages together is not allowed. When using USB interface, always send the entire message in a single data block.
Commands never wait for some operation to complete, they always return the current status or data. The command processing time is typically a few ms and always less than 100 ms . Note that this does not include the data transfer time, which may be considerable for long messages and low baud rates with RS232 interface.

5.5.1 Command syntax

Command and response messages are constructed exclusively of printable ASCII characters. Messages are case sensitive, so use only capital letters.
Communication protocol is based strictly on the client-server architecture. The computer starts the command by sending the command message and the device always replies with the response message. Each message is terminated with the line feed character (hexadecimal value $0 \times 0 \mathrm{~A}$).
Response message is constructed of obligatory status message and optional data message. Status message is defined by the first two characters of the response message. Status message are:

- OK signals that the command was correctly executed
- E1 signals a syntax error in the command message
- E2 signals invalid parameter value or format
- E3 signals invalid CRC value in a data block
- E4 signals communication error on the interface level
- E5 signals that the communication buffer for data transfer to display is full
- E6 signals that command is valid, but cannot be accepted at this time
- E7 signals that command is valid, but it is not supported by the particular device configuration
- $E 8$ to $E 9$ are reserved values

5.5.1.1 Binary blocks

Binary data of any value can be sent using a binary block structure. This allows you to send nonprintable characters without interfering with the communication protocol. Binary block is always placed in the beginning of the command message and after status in the response message. Binary block syntax is:

\#ddd\{ binary data of size ddd\}

The hash character \# marks the beginning of the binary block. Three decimal digits ddd specify the length of binary data. This length does not include the characters \#ddd\{ and \}, it includes only the net length of binary data. The opening braces character \{ marks the beginning of the binary data and the closing braces character \} marks the end of the binary data. Binary data consists of ddd characters of any value, including line feed, zero character and braces. Note that the end of binary data is defined by the length ddd, the closing braces is just a syntax element. A closing braces character within the binary data will not signal the end of binary block.
Example:
Binary block: \#010\{ 3366 AF $30 \quad 20 \quad 204953$ \}

5.5.1.2 BCD numeric format

UT-ONE stores floating-point numbers using a signed BCD (Binary Coded Decimal) numeric format with 12 digits and exponent in range from -99 to +99 : \pm d.dddddddddddE \pm ee
BCD numbers are often used in command and response messages in ASCII format, which must follow exact syntax defined above. If the first digit of mantissa is equal to zero, the whole number is treated as zero. Adjust the exponent so that the first digit of mantissa is not equal to zero.
Examples:

Valid ASCII BCD numbers: | | $-1.23456789012 \mathrm{E}-34$ |
| ---: | :--- |
| | $+3.14159265359 \mathrm{E}+00$ |
| | $+1.00185000000 \mathrm{E}+02$ |
| | $+0.0000000000 \mathrm{E}+00$ |
| | $+9.99999999999 \mathrm{E}+99$ |

Invalid ASCII BCD numbers: -1.23452E-34
$+3.14159265359$
100.00185

0
0.000123
$B C D$ numbers can also be stored in packed BCD format, which stores one floating-point $B C D$ in 8 eight bytes of memory. 6 bytes are used for decimal digits dd (two digits in each byte), one is used for sign ss ($0 \times 0 \mathrm{C}$ for positive sign and 0x0D for negative sign). Exponent ee in range from -99 to 99 is stored in signed two's complement binary format (one byte).
dd dd dd dd dd dd ss ee
Packed BCD numbers are often used in commands that store data directly to UT-ONE non-volatile memory. Packed BCD number format includes non-printable characters, so they can only be used in a message inside a binary block.
Examples:
Packed BCD numbers: $\quad \begin{array}{llllllll}12 & 34 & 56 & 78 & 90 & 12 & O D & D E\end{array}$
314159265359 OC OO
$1001850000000 C 02$
0000000000000000
999999999999 OC 63

5.5.1.3 Time format

UT-ONE stores time information in 32-bit integer format, which represents the number of seconds elapsed since 2000-01-01 00:00:00. Resolution of time values is 1 second.
UT-ONE does not support automatic time-zone and daylight-saving-time correction. If required, correct this by manually setting the correct time.
Time values are normally used in messages in ASCII text format. It is a fixed length string consisting of a positive sign and 10 decimal digits:

3-Channel Thermometer Readout

Alternatively, when transferring readings in binary format using binary blocks, time values can be stored in as unsigned 32-bit integer. Least significant byte is stored first.
Examples:

Date and time	ASCII time format	Binary time format		
2000-01-01 00:00:00	+0000000000	$00 \quad 00$	00	00
2021-08-23 12:34:56	+0683037296	70	52	B6
2021-09-16 17:39:52	+0685129192	$E 8$	$3 D$	D6
2035-12-20 22:08:51	+1135116531	F3 80	A8	43

5.5.1.4 Readings binary format

Temperature, relative humidity, emf and resistance readings are stored in UT-ONE internal memory in readings binary format. Readings binary format is a 32-bit integer with flexible resolution. Least significant byte is stored first.
Readings binary format represent readings in full accuracy in least number of characters, so it is very useful for quickly transferring large blocks of readings from UT-ONE internal memory to a computer.
The value in the 3 least significant bits determines the unit and resolution:
$0=$ temperature in kelvin with resolution 0.000001 K
$1=$ ERROR or EMPTY
2 = relative humidity in \%rh with resolution 0.000001 \%rh
$3=\mathrm{emf}$ in $\mu \mathrm{V}$ with resolution $0.001 \mu \mathrm{~V}$
$4=$ resistance in ohm with resolution 0.0001 ohm
$5=$ resistance in ohm with resolution 0.00001 ohm
$6=$ resistance in ohm with resolution 0.000001 ohm
7 = resistance in ohm with resolution 0.0000001 ohm
Examples:

Unit	Value	ASCII number format	Binary number format
0	728.273456 K	+0728273456	$3092682 B$
0	268.026544 K	+0268026544	B0 C2 F9 OF
2	55.120000 \%rh	+0055120002	82104903
3	$32566.120 \mu \mathrm{~V}$	+0032566123	6B EB FO 01
3	-815.488 $\mu \mathrm{V}$	-0000815485	83 8E F3 FF
4	155444.1240 ohm	+1554441244	$1 C$ E4 A6 5C
7	101.1234568 ohm	+1011234575	$0 F 37463 C$
1	EMPTY	+0016843009	01010101
1	ERROR	+0033686017	01020202

5.5.2 Channel configuration commands

This group of commands enables you to configure acquisition settings for each of the main channels. This configuration is applicable only to acquistion in continuous measurement mode, acquisition in other measurement mode is configured for each individual reading. Channel configuration includes probe index, measurement range, averaging time, status, measurement current and connection.

5.5.2.1 CPссс?

Return the currently selected probe index for main channel ccc. ccc is the channel name in short or long format (for example 'С1 ', ‘В3 ', 'С01', 'С02' or 'В01'). Refer to table 1 for full list of applicable channel names. Probe index can be any probe index according to probe list from 0 to 48.

```
Command message: CPccc?
Response message: OK<Probe index>
    Example:
    Command message: CPC1 ?
    Response message: OK21
    LabVIEW driver: UT-ONE Channe/ Driver.vi
```


5.5.2.2 CPccc <Probe index>

Set the new probe index for main channel ccc. ccc is the channel name in short or long format (for example 'С1 ', 'В3 ', 'С01', 'С02' or ' $\mathrm{B} 01^{\prime}$). Refer to table 1 for full list of applicable channel names. Probe index can be any probe index according to probe list from 0 to 48.

```
Command message: CPccc <Probe index>
Response message: OK
Example:
Command message: CPB1 23
Response message: OK
LabVIEW driver: UT-ONE Channe/ Driver.vi
```


5.5.2.3 CRccc?

Return the currently selected measurement range label for main channel ccc. ccc is the channel name in short or long format (for example ' C 1 ', ' $\mathrm{B} 3{ }^{\prime}$ ', ${ }^{\mathrm{C}} \mathrm{C} 01^{\prime}, ~ ' \mathrm{C} 02^{\prime}$ or ${ }^{\text {' } \mathrm{B} 01 ') . ~ R e f e r ~ t o ~ t a b l e ~} 1$ for full list of applicable channel names. Valid measurement range labels are RA, R1, R2, R3, R4, R5, R6, HA, H1, H2, H3, H4, H5, H6, EA, E1, E2, E3, E4, E5,E6, rA, r1, r2, r3, r4, r5, r6, hA, h1, h2, h3, h4, h5 and h6.

Command message: CRccc?
Response message: OK<Measurement range label>
Example:
Command message: CRC1 ?
Response message: OKR3
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.4 CRccc <Measurement range label>

Set the new measurement range label for main channel ccc. ccc is the channel name in short or long format (for example 'C1 ', 'B3 ', 'C01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Valid measurement range labels are RA, R1, R2, R3, R4, R5, R6, HA, H1, H2, H3, H4, H5, H6, EA, E1, E2, E3, E4, E5,E6, rA, r1, r2, r3, r4, r5, r6, hA, h1, h2, h3, h4, h5 and h6.

Command message: CRccc <Measurement range label>
Response message: OK
Example:
Command message: CRC2 E1
Response message: OK
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.5 CAccc?

Return the averaging time in seconds for main channel ccc. ccc is the channel name in short or long format (for example 'C1 ', 'B3 ', 'C01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Averaging time is the time it takes to acquire the particular channel in the acquisition sequence. Averaging time can be set in steps of 2 seconds from 2 seconds to 240 seconds. Increasing averaging time will reduce measurement noise and decrease acquisition rate.

Command message: CAccc?
Response message: $\mathrm{OK}<$ Averaging time>
Example:
Command message: CAC01?
Response message: OK010
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.6 CAccc <Averaging time>

Set the averaging time for main channel ccc. ccc is the channel name in short or long format (for example 'C1 `, 'B3 ', 'C01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Averaging time is the time it takes to acquire the particular channel in the acquisition sequence. Averaging time can be set in steps of 2 seconds from 2 seconds to 240 seconds. Increasing averaging time will reduce measurement noise and decrease acquisition rate.

Command message: CAccc <Averaging time>
Response message: OK
Example:
Command message: CAC1 012
Response message: OK
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.7 CCccc?

Return the measurement current setting for main channel ccc. ccc is the channel name in short or long format (for example 'C1 ', 'B3 ', 'С01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Measurement current can be set to either NR or RD setting. Normal setting is NR and this setting should be used for all measurements. At RD setting, the measurement current for the selected channel is reduced by $\sqrt{ } 2$. Use this feature to estimate the self-heating error.

Command message: CCccc?
Response message: OK<Measurement current setting>
Example:
Command message: CCC1 ?
Response message: OKNR
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.8 CCccc <Measurement current setting>

Set the measurement current for main channel ccc. cCC is the channel name in short or long format (for example 'С1 ', 'В3 ', 'C01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Measurement current can be set to either NR or RD setting. Normal setting is NR and this setting should be used for all measurements. At RD setting, the measurement current for the selected channel is reduced by $\sqrt{ } 2$. Use this feature to estimate the self-heating error.

```
    Command message: CCccc <Measurement current setting>
    Response message: OK
    Example:
    Command message: CCC2 RD
    Response message: OK
    LabVIEW driver: UT-ONE Channe/ Driver.vi
```


5.5.2.9 CWccc <Connection>

Set the new connection type for main channel ccc. CCC is the channel name in short or long format (for example ' C 1 ', ' B 3 ', ' $\mathrm{C} 01^{\prime}, ~ ' \mathrm{C} 02{ }^{\prime}$ or ' B 01 '). Refer to table 1 for full list of applicable channel names. Valid connection types for PRTs and thermistors are DF (default 4-wire connection), 3W (3-wire connection) and 2W (2-wire connection).
Valid connection types for thermocouples are DF (default thermocouple connection to thermocouple connector or voltage connectors) and AX (thermocouple auxiliary connection on current connectors).
If you set an invalid connection type for a particular probe type, acquisition will be performed using the default connection type.

Command message: CWccc <Connection type>
Response message: OK
Example:
Command message: CWC03 3W
Response message: OK
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.10 CWccc?

Returns the connection type for main channel ccc. ccc is the channel name in short or long format (for example ' C 1 ', ' B 3 ', ' $\mathrm{C} 011^{\prime}, ~ ' \mathrm{C} 02{ }^{\prime}$ or ' B 01 '). Refer to table 1 for full list of applicable channel names. Valid connection types for PRTs and thermistors are DF (default 4-wire connection), 3W (3-wire connection) and 2W (2-wire connection).
Valid connection types for thermocouples are DF (default thermocouple connection to thermocouple connector or voltage connectors) and AX (thermocouple auxiliary connection on current connectors).

Command message: CWccc?
Response message: OK<Connection type>
Example:
Command message: CWC03?
Response message: OKAX
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.2.11CEccc?

Return the channel status for main channel ccc. CCC is the channel name in short or long format (for example 'C1 ', 'B3 ', 'C01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Channel status determines if the channel is included in the acquisition sequence. Channel status can be
either ON (enabled channel, included in the acquisition sequence) or OF (disabled channel, excluded from the acquisition sequence).

Command message:	CEccc?
Response message:	OK<Channel status>
Example:	
Command message:	CEC1 ?
Response message:	OKON
LabVIEW driver:	UT-ONE Channel Driver.vi

5.5.2.12 CEccc <Channel Status>

Set the new channel status for main channel ccc. ccc is the channel name in short or long format (for example `С1 ', 'B3 ', 'С01', 'С02' or 'B01'). Refer to table 1 for full list of applicable channel names. Channel status determines if the channel is included in the acquisition sequence. Channel status can be either ON (enabled channel, included in the acquisition sequence) or OF (disabled channel, excluded from the acquisition sequence).

Command message: CSccc <Channel status>
Response message: OK

Example:

Command message: CSC01 OF
Response message: OK
LabVIEW driver: UT-ONE Channel Driver.vi

5.5.3 Parameter configuration commands

This group of commands enables you to read or write various parameters related to UT-ONE operation.

5.5.3.1 DA?

Return current setting for auto-start continuous measurement. This setting allows you to control if the UT-ONE will immediately start with acquisition in continuous measurement mode after UT-ONE is started. Available settings are:

- OF = UT-ONE will start without starting continuous measurement
- ON = UT-ONE will start with started continuous measurement
- $\quad A U=U T-O N E$ will start with started continuous measurement if it was shutdown with started continuous measurement
Command message: DA?
Response message: OK<Auto-start setting>
Example:
Command message: DA?
Response message: OKON
LabVIEW driver: UT-ONE Acquisition Status Driver.vi

5.5.3.2 DA <Auto-start setting>

Set new setting for auto-start continuous measurement.
Command message: DA <Auto-start setting>
Response message: OK

Example:
Command message: DA AU
Response message: OK
LabVIEW driver: UT-ONE Acquisition Status Driver.vi

5.5.3.3 DB?

Return current baud rate setting for RS232 communication interface. Baud rate settings are:

- $\mathrm{BO}=300$ baud
- $\mathrm{B} 1=600$ baud
- $\mathrm{B} 2=1200$ baud
- B3 $=2400$ baud
- $\mathrm{B} 4=4800$ baud
- $\mathrm{B} 5=9600$ baud
- $B 6=19200$ baud
- B7 $=38400$ baud (default)
- $\mathrm{B} 8=56000$ baud
- $\mathrm{B} 9=57600$ baud
- $B A=115200$ baud
- $B B=128000$ baud
- $B C=230400$ baud
- $B D=250000$ baud
- $B E=$ reserved
- $B F=$ reserved

Command message: DB?
Response message: OK<Baud rate setting>
Example:
Command message: DB?
Response message: ОКB7
LabVIEW driver: Not available

5-5.3.4 DB <Baud rate setting>

Set new baud rate setting for RS232 communication interface. New setting will become active after you restart UT-ONE. This command will also set parity setting to default odd parity.

Command message: DB <Baud rate setting>
Response message: OK
Example:
Command message: DB B5
Response message: OK
LabVIEW driver: Not available

5.5.3.5 DP?

Return current parity setting for RS232 communication interface. Parity settings are:

- $N=$ none
- $E=$ even parity
- $\mathrm{O}=$ odd parity (default)

Command message: DP?
Response message: OK<Parity setting>
Example:

Command message: DP?
Response message: око
LabVIEW driver: Not available

5.5.3.6 DP <Parity setting>

Set new parity setting for RS232 communication interface. New setting will become active after you restart UT-ONE. Note that default parity setting is odd parity. UT-ONE LabVIEW drivers and UT-ONE Applications software always use odd parity. Use different parity setting only for other external applications. Note that setting baud rate will also reset parity to default odd parity.

```
Command message: DP <Parity setting>
Response message: OK
Example:
Command message: DP E
Response message: OK
LabVIEW driver: Not available
```


5.5.4 Device control commands

This group of commands enables you to set the UT-ONE device in a particular operating mode. This includes starting various acquisition modes and switching the UT-ONE device off.

5.5.4.1 DS?

Return current acquisition status. UT-ONE supports four different acquisition statuses:
$\mathrm{OF}=\mathrm{UT}-\mathrm{ONE}$ is currently not acquiring and is in idle state
ON = UT-ONE is currently acquiring in continuous measurement mode
SR = UT-ONE is currently acquiring in single-reading mode
DG = UT-ONE is currently acquiring in digitizing mode
Command message: DS?
Response message: OK<Acquisition status>
Example:
Command message: DS?
Response message: OKON
LabVIEW driver: UT-ONE Acquisition Status Driver.vi

5.5.4.2 DS <Acquisition status>

Set new acquisition status. You can only change acquisition status for the continuous measurement mode: Available options are:

OF = stop acquiring in continuous measurement mode and enter idle state
$\mathrm{ON}=$ start acquiring in continuous measurement mode
Command message: DS <Acquisition status>
Response message: OK
Example:
Command message: DS OF
Response message: OK
LabVIEW driver: UT-ONE Acquisition Status Driver.vi

5.5.4.3 DX OF

Start the shutdown sequence. UT-ONE will stop acquisition, store non-volatile settings, release resources and shut down the power supply. Starting the UT-ONE using the communication interface is not possible.

Command message: DX OF
Response message: OK
Example:
Command message: DX OF
Response message: OK
LabVIEW driver: UT-ONE Acquisition Status Driver.vi

5.5.4.4 DDccc<Measurement range label>< Frequency index >

Start acquisition on main channel ccc in fast digitizing mode with specified measurement range and using specified sampling frequency. ccc is the channel name in short or long format (for example 'c1 ', 'B3 ', 'C01', 'C02' or 'B01'). Refer to table 1 for full list of applicable channel names. Fast digitizing mode will stop normal acquisition sequence. Valid measurement range labels are R1, R2, R3, R4, R5, R6, H1, H2, H3, H4, H5, H6, E1, E2, E3, E4, E5,E6, r1, r2, r3, r4, r5, r6, h1, h2, h3, h4, h5, h6 and h7. Note that auto ranging is not supported. Sampling frequency is set according to specified frequency index:

- $1 \quad 470 \mathrm{~Hz}$
- 2242 Hz
- 3123 Hz
- 462 Hz
- 550 Hz
- 639 Hz
- 733.2 Hz
- $8 \quad 19.6 \mathrm{~Hz}(60 \mathrm{~Hz}$ line rejection)
- $9 \quad 16.7 \mathrm{~Hz}$ (50 Hz line rejection)
- A $\quad 16.7 \mathrm{~Hz}(50 \mathrm{~Hz}$ and 60 Hz line rejection)
- B $\quad 12.5 \mathrm{~Hz}$ (50 Hz and 60 Hz line rejection)
- C $\quad 10 \mathrm{~Hz}$ (50 Hz and 60 Hz line rejection)
- D $\quad 8.33 \mathrm{~Hz}(50 \mathrm{~Hz}$ and 60 Hz line rejection $)$
- E $\quad 6.25 \mathrm{~Hz}(50 \mathrm{~Hz}$ and 60 Hz line rejection)
- F $\quad 4.17 \mathrm{~Hz}(50 \mathrm{~Hz}$ and 60 Hz line rejection)

Command message: DDccc< Measurement range label>< Frequency index >
Response message: OK
Example:
Command message: DDC1 R3A
Response message: OK
LabVIEW driver: UT-ONE Digitizing Driver.vi
Acquisition of samples is continuous and there is no current reversal. Note that absolute accuracy is significantly worse in fast digitizing mode and readings may be subject to interference and drift.
After the command is successfully processed, UT-ONE enters in fast digitizing mode and starts automatic acquisition of ADC reading at specified sampling frequency. Note that the data throughput at high sampling frequencies is considerable, so the use of USB interface is recommended in order to avoid missing samples. ADC readings can be read using the B ? command. Refer to the sample application UTONE Digitizing for more information.

5.5.5 Probe management commands

This group of commands is used to read, write and list probe data, which can be used to convert acquired raw readings to temperature.

5.5.5.1 EP<Probe index>?

Return probe data for given probe index. Probe data is stored in a binary structure specified in the Probe coefficients chapter. Probe data is 128 bytes long and is terminated with two CRC characters, which ensure data integrity. Probe data is transferred in a binary block.

```
Command message: EP<Probe index>?
Response message: #128{ Probe data } OK
Example:
Command message: EP21?
Response message: #128{5074 2D31 3030 2020 4953 4F2F 49454337 3531 2020 5043
                                    1000 0000 0000 0C02 3908 3000 0000 OCFD 5775 0000 0000 ODF9
                                    4 1 8 3 0 0 0 0 0 0 0 0 ~ O D F 4 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 0
                                    0000 0000 3132 3334 3536 3738 3930}3132 3334 3536 3738 393
                                    3132 3334 3536 3738 3930 3132 3334 3536 3738 3930 3132 3334
                                    3536}37383930 3132 4716}O
```

LabVIEW driver: UT-ONE Probe Driver.vi

5.5.5.2 EP<Probe index>

Set new user-defined probe data for given probe index. Note that probe index must be between 1 and 20 in order to store a new user-defined probe data. Probe data is stored in a binary structure specified in the Probe coefficients chapter. Probe data is 128 bytes long and is terminated with two CRC characters, which ensure data integrity. Probe data is transferred in a binary block.

Command message: <Binary block with probe data >EP<Probe index>
Response message: OK
Example:
Command message: \#128\{ $\begin{array}{lllllllllllllllll}5074 & 2 D 31 & 3030 & 2020 & 4953 & 4 F 2 F & 4945 & 4337 & 3531 & 2020\end{array}$ $50431000000000000 C 02390830000000$ OCFD 577500000000 ODF9 418300000000 ODF4 0000000000000000000000000000 000000000000313233343536373839303132333435363738 393031323334353637383930313233343536373839303132 333435363738393031324716 \}EP14
Response message: OK
LabVIEW driver: UT-ONE Probe Driver.vi

5.5.5.3 EPN<Probe index>?

Returns probe name for given probe index, as defined in probe data structure. Probe data is stored in a binary structure specified in the Probe coefficients chapter. Probe name is 20 characters long (shorter probe names are filled with trailing spaces).

Command message: EPN<Probe index>?
Response message: OK
Example:
Command message: EPN21?
Response message: OKPt-100 ISO/IEC751
LabVIEW driver: UT-ONE Probe Driver.vi

5.5.6 Internal flash memory commands

This group of commands is used to manage the readings stored in the internal flash memory. Internal flash memory is an optional feature and is not available on all UT-ONE devices. The size of the internal flash memory is 32 MB and can store up to 2 million readings. When the flash memory is full, new readings will automatically overwrite the oldest readings.
If optional internal flash memory is not available, UT-ONE will reply with E7 response message.

5.5.6.1 FB?

Get a block of binary data from the internal flash memory at specified memory address and with specified size. This command is applicable only for UT-ONE devices with optional internal flash memory.
Memory address is given as first four byte address in the binary block (least significant byte first). Block size is given as fifth byte. Block size is limited to 240 bytes.

```
Command message: <Binary block with memory address and block size>FB?
Response message: < Binary block with flash memory data }OK
Example:
Read 32 bytes (2 readings) from memory address 784.
Command message: #005{10 03 00 00 20}FB?
Response message: #032{A3 47 E9 26 20 44 E9 11 20 44 E9 11 81 00 81 DE A3 47
E9 26 60 D5 59 11 60 D5 59 11 82 00 00 2D}OK
LabVIEW driver: UT-ONE Flash Memory Driver.vi
```


5.5.6.2 FR <Reading Index>?

Get reading data at given reading index in text format. This command is applicable only for UT-ONE devices with optional internal flash memory.

Command message: FR <Reading Index>?
Response message: OKRT $:<$ Real time value $>,<$ Raw channel name $>:<$ Raw channel value >,UNB:<Raw channel unit>,< Channel name >:< Channel value >,UNC:<Channel unit>,RNG:< Measurement range label >,CON:< Connection Configuration>,PRB:< Probe index>

Example:
Command message: FR 0000000008?
Response message: OKRT : 0652822763,B3 :+2.50017968000E+01,UNB:OHM, C3
:+2.80160000000E-02, UNC:DEG,RNG:R1,CON:DF, PRB:22
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.6.3 FA?

Get memory address of first reading, last reading and total memory size. This command is applicable only for UT-ONE devices with optional internal flash memory.
Memory address is returned in a binary block as 32 -bit integer (least significant byte first).
Command message: FA?
Response message: < Binary block with memory address data \}OK
Example:
Command message: FA?
Response message: \#012\{00 00000050 F1 000000000002 \}ok
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.6.4 FI?

Get reading index of first reading, last reading and total number of reading locations. This command is applicable only for UT-ONE devices with optional internal flash memory.
Memory address is returned in a binary block as 32 -bit integer (least significant byte first).
Command message: FI?
Response message: OKSTA:<Reading index of first reading>,END:<Reading index of last reading>,SIZ:< Number of reading locations>

Example:

Command message: FA?
Response message: OKSTA: 0000000000,END: 0000003944,SIZ: 0002097152
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.6.5 FW?

Get status of write to flash memory flag. This command is applicable only for UT-ONE devices with optional internal flash memory.

Command message: FW?
Response message: $\mathrm{OK}<$ Write to memory flag>
Example:
Command message: FW?
Response message: OKON
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.6.6 FW <Write to Memory flag>

Set status of write to flash memory flag. This command is applicable only for UT-ONE devices with optional internal flash memory.

```
Command message: FW < Write to memory flag>
Response message: OK
Example:
Command message: FW OF
Response message: OK
LabVIEW driver: UT-ONE Flash Memory Driver.vi
```


5.5.6.7 FS?

Get startup status of write to flash memory flag. This command is applicable only for UT-ONE devices with optional internal flash memory.

```
Command message: FS?
Response message: OK<Startup Write to Memory flag>
Example:
Command message: FS?
Response message: OKOF
LabVIEW driver: UT-ONE Flash Memory Driver.vi
```


5.5.6.8 FS <Startup Write to Memory flag>

Set status of startup write to flash memory flag. This command is applicable only for UT-ONE devices with optional internal flash memory.

Command message:
FS <Startup Write to memory flag>
Response message: OK
Example:
Command message: FS OF
Response message: OK
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.6.9 FE <Erase Password>

Erase entire flash memory. This operation can't be undone. Erasing takes approximately 100 seconds. Make sure that UT-ONE remains powered during erasing. This command is applicable only for UT-ONE devices with optional internal flash memory.
Erasing is protected with erase memory password: R0q11maH
Command message: FE <Erase Password>
Response message: OK
Example:
Command message: FE R0q11maH
Response message: OK
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.6.10 FE?

Get erase memory status. This command is applicable only for UT-ONE devices with optional internal flash memory.
This command is used in software to check when the erase command is completed.
Command message: FE?
Response message: OK<Erase status>
Example:
Command message: FE?
Response message: OKBUSY
LabVIEW driver: UT-ONE Flash Memory Driver.vi

5.5.7 GPIB interface configuration commands

This group of commands enables you to set the parameters of the GPIB communication interface, including setting the GPIB address and enabling the GPIB interface. GPIB is an optional communication interface and is not available on all UT-ONE devices. Communication via GBIB interface uses the same command set as communication via the default USB interface.
If optional GPIB interface is not present, UT-ONE will reply with E7 response message to all commands in this group.

5.5.7.1 GA?

Return current GPIB address.
Command message: GA?
Response message: OK<GPIB Address>
Example:
Command message: GA?

Response message:
OKO 7
LabVIEW driver: UT-ONE GPIB Configuration Driver.vi

5.5.7.2 GA <GPIB Address>

Set new GPIB address. Valid GPIB addresses are in range from 1 to 30.
Command message: GA <GPIB Address>
Response message: OK
Example:
Command message: GA 05
Response message: OK
LabVIEW driver: UT-ONE GPIB Configuration Driver.vi

5.5.7.3 GE?

Return the enable status of the GPIB and RS232 interface.
Command message: GE?
Response message: OK<GPIB enable status>,<RS232 enable status>
Example:
Command message: GE ?
Response message: OKON, OF
LabVIEW driver: UT-ONE GPIB Configuration Driver.vi

5.5.7.4 GE <Enable status>

Set new enable status for the GPIB and RS232 interface. This command is applicable only for UT-ONE devices with optional GPIB+RS232 interface. Valid status is ON (interface enabled), OF (interface disabled) and OK (no changes to current setting).
If GPIB interface is installed, but it is not used, it is recommended to set the GPIB enabled status to OF. This will reduce device power consumption.

Command message: GE <GPIB enable status>,<RS232 enable status>
Response message: OK
Example:
Command message: GE ON,OK
Response message: OK
LabVIEW driver: UT-ONE GPIB Configuration Driver.vi

5.5.8 Identification string commands

5.5.8.1 I?

Return identification string from UT-ONE.
Command message: I?
Response message: $\quad \mathrm{OK}<$ identification string >
Example:
Command message: I?
Response message: OKBatemika, UT-ONE
LabVIEW driver: UT-ONE ID Strings Driver.vi

```
5.5.8.2 IS?
Return serial number from UT-ONE.
Command message: IS?
Response message: OK < serial number >
Example:
Command message: IS?
Response message: OKB01010915
LabVIEW driver: UT-ONE ID Strings Driver.vi
```


5.5.8.3 IP?

```
Return production number from UT-ONE.
Command message: IP?
Response message: OK < production number >
Example:
Command message: IP?
Response message: OKUTONE 0201250813-04020402
LabVIEW driver: UT-ONE ID Strings Driver.vi
```


5.5.8.4 IM?

```
Return measurement modul number from UT-ONE.
Command message: IM?
Response message: OK < measurement modul number >
Example:
Command message: Iм?
Response message: OKA3010 0003150314-0603010
LabVIEW driver: UT-ONE ID Strings Driver.vi
```


5.5.8.5 IV?

```
Return firmware version from UT-ONE.
Command message: IV?
Response message: \(\quad \mathrm{OK}\) < firmware version >
Example:
Command message: IV?
Response message: OK2.07.00r
LabVIEW driver: UT-ONE ID Strings Driver.vi
```


5.5.8.6 IC?

```
Return firmware CRC (cyclic redundancy code) from UT-ONE.
Command message: IC?
Response message: OK < application firmware CRC > < bootloader firmware CRC >
Example:
Command message: IC?
Response message: OK532EA4 D20BF4
```

LabVIEW driver:
UT-ONE ID Strings Driver.vi

5.5.9 Display data streaming commands

5.5.9.1 L?

Return data sent directly from display. Data is returned within the binary block. If there is no data available, this command returns status OK only and no binary block

Command message: L?
Response message: OK< binary block with display data>
Example:
Command message: L?
Response message: \#040\{0001000000010C00 0000 0000 0000 0C00 00000000
0000 OC00 $0000000000000 C 00000000000000$ OCOO \}OK
LabVIEW driver: UT-ONE SD Streaming Driver.vi

5.5.9.2 LW

Send data directly to display. If the buffer for transfer to display is full, command will return error E5. In this case, resend the command.

Command message: < binary block with display data>LW
Response message: OK
Example:
Command message: \#040\{ $0001000000010 C 000000000000000 C 0000000000$ $00000 C 000000000000000 C 000000000000000 C 00$ \}LW
Response message: OK
LabVIEW driver: UT-ONE SD Streaming Driver.vi

5.5.10 Continuos measurement commands

5.5.10.1 M < Channel name >?

Return the current measurement for the given channel. Channel name can be any channel name except real time value RT, which is returned by default. Channel name can be in either short or long format. Channel values are updated after the end of the acquisition sequence. If acquisition status is OF, channel values are not updated. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000. Channel value is given as a BCD numeric.

Command message: $\mathrm{M}<$ Channel name > ?
Response message: OKRT $:<$ Real time value $>,<$ Channel name $>:<$ Channel value $>$
Example:
Command message: MTA ?
Response message: OKRT : 0457638877,TA :+2.45400060000E+01
LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

5.5.10.2 MA<Channel name >?

Return the current measurement for the given channel including real time value, raw channel value, channel value, measurement range, connection configuration and probe index. Channel name can be any channel name except real time value RT, which is returned by default. Channel name can be in either short or long format. Channel values are updated after the end of the acquisition sequence.

Command message: MA<Channel name > ?
Response message: OKRT $:<$ Real time value $>,<$ Raw channel name $>:<$ Raw channel value >,UNB:<Raw channel unit>,< Channel name >:< Channel value >,UNC:<Channel unit>,RNG:< Measurement range label >,CON:< Connection Configuration>,PRB:< Probe index>

Example:

Command message:
MAC01?
Response message: OKRT : 0659553013,B01:+9.99537256000E+01,UNB:OHM, C01:$1.18400000000 \mathrm{E}-01$, UNC: DEG, RNG: R3, CON: DF, PRB: 21
LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

5.5.10.3 MT?

Return the current measurements for seven main channels, which are also displayed on the display ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{RH}, \mathrm{TA}, \mathrm{TD}$ and TJ). Channel values are updated after the end of the acquisition sequence. If acquisition status is OF, channel values are not updated. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01 .2000 . Channel value is given as a BCD numeric. If the channel is disabled, the channel value is returned as "*****************".

Command message: MT?
Response message: OKRT :<Real time value $>, \mathrm{C} 1:<$ Channel C1 value $>, \mathrm{C} 2:<$ Channel C2 value $>, \mathrm{C} 3:<$ Channel C3 value $>$,RH :< Channel RH value $>$,TA $:<$ Channel TA value $>$,TD : < Channel TD value $>$,TJ :< Channel TJ value $>$
Example:
Command message: MT?
Response message: OKRT : 0457639129,C1 :+8.61986654000E+02,C2
$: * * * * * * * * * * * * * * * * * *, \mathrm{C} 3: * * * * * * * * * * * * * * * * * *, \mathrm{RH}$
$:+6.03755100000 \mathrm{E}+01, \mathrm{TA}:+2.45400060000 \mathrm{E}+01$, TD
$:+1.63703740000 \mathrm{E}+01$, TJ $:+2.50272300000 \mathrm{E}+01$
LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

5.5.10.4 MR?

Return the current measurements for seven raw-data channels ($B 1, B 2, B 2, B H, B A, B D$ and $B J$). Channel values are updated after the end of the acquisition sequence. If acquisition status is OF, channel values are not updated. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000. Channel value is given as a BCD numeric. If the channel is disabled, the channel value is returned as "******************".

Command message: MR?
Response message: OKRT :<Real time value $>, \mathrm{B} 1:<$ Channel B1 value $>, \mathrm{B} 2:<$ Channel B2 value $>, \mathrm{B} 3:<$ Channel $\mathrm{B3}$ value $>, \mathrm{BH}:<$ Channel $B H$ value $>, \mathrm{BA}:<$ Channel $B A$ value $>, \mathrm{BD}:<$ Channel TD value $>, \mathrm{BJ}:<$ Channel BJ value $>$
Example:
Command message: MR?
Response message: OKRT : 0457656074,B1 :+9.99297740000E+01,B2

```
:******************, B3 :*********************, BH
:+5.82529820000E+01,BA :+2.43200060000E+01,BD
:+1.56051900000E+01,BJ :+2.44171180000E+01
```

LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

5.5.10.5 ML?

Return the value of the last measured channel in the acquisition sequence (channels $\mathrm{C} 1, \mathrm{C} 2$ or C 3). Channel values are normally updated simultaneously after the end of the acquisition sequence, but this command allows the reading of channel value immediately after channel acquisition is completed. This allows a smoother adding of values to the graph and assigns the exact time to each channel.
If acquisition status is OF, channel values are not updated. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01 .2000 . Channel value is given as a BCD.

Command message: ML?
Response message: OKRT $:<$ Real time value $>,<$ Last channel name $>:<$ Last channel value $>$
Example:
Command message: ML?
Response message: OKRT : 0457656194,C1 :+8.61990734000E+02
LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

5.5.10.6 MI?

Returns the immediate measurement values for channels that are not acquired within acquisition sequence (RH, TA, TD, TJ and TI). The values are not synchronized to the end of the acquisition sequence. Values are updated regardless of the acquisition status. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000. Channel value is given as a $B C D$ numeric.

Command message: MI?
Response message: OKRT:< Real time value $>, \mathrm{RH}:<$ Channel $R H$ value $>, \mathrm{TA}:<$ Channel TA value >,TD :< Channel TD value >,TJ :< Channel TJ value >,TI :<Channel TI value>

Example:
Command message: MI?
Response message: OKRT : 0457656600,RH :+5.80266700000E+01,TA
$:+2.43900060000 \mathrm{E}+01, \mathrm{TD}:+1.56097260000 \mathrm{E}+01, \mathrm{TJ}$
:+2.43244460000E+01,TI :+2.13098540000E+01
LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

5.5.10.7 MI<Channel name >?

Return the immediate measurement for the given channel. Channel name can be in either short or long format. Channel name can be any channel name except real time value RT, which is returned by default. This command returns the immediate value for the channel and is not synchronized with the acquisition sequence. Note that if acquisition status is OF, main channels are not updated, but ambient channels are updated. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000. Channel value is given as a BCD numeric.

```
Command message: MI< Channel name >?
Response message: OKRT :< Real time value >,< Channel name >:< Channel value >
Example:
Command message: MITA ?
Response message: OKRT : 0457638877,TA :+2.45400060000E+01
LabVIEW driver: UT-ONE Continuous Measurement Driver.vi
```


5.5.10.8 MB?

Returns the current values of LiPo battery monitoring channels (VB, SC and ES). VB monitors battery voltage, SC monitors state of charge in \%, ES gives extended battery/charger status and BC in count
of battery charge cycles. The values are not synchronized to the end of the acquisition sequence. Values are updated regardless of the acquisition status. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000. Channel values are given as a BCD numeric.

```
Command message: MB?
Response message: OKRT :< Real time value >,VB :< Channel VB value >,SC :< Channe/ SC value
    >,ES :< Channel ES value >
```

Example:
Command message: MB?
Response message: OKRT : $0659553560, \mathrm{VB}:+4.17360000000 \mathrm{E}+00, \mathrm{SC}$
:+9.59120000000E+01,ES :+5.20000000000E+01,BC
:+3.00000000000E+00
LabVIEW driver: UT-ONE Battery Driver.vi

5.5.11 Single measurement commands

5.5.11.1 S<Channel> <Reference Channel> <Range> <Samples> <Connection> <Probeindex>

Starts a single reading with selected settings. Channel name can be in either short or long format. Channe/ is the channel name on which reading is acquired (valid channel names are B1, B2 and B3, or equivalently C1, C2 and C3). Reference Channe/ is the channel name on which a compatible external standard is connected (valid reference channel names are $00, \mathrm{~B} 1, \mathrm{~B} 2$ and B 3 , or equivalently $00, \mathrm{C} 1$, C2 and C3). Note that this feature is optional, if external standard is not used, enter 00 for reference channel name. Range is the label of the range, which will be used for acquiring the single reading. You may use both manual and auto ranges (valid range labels are RA, R1, R2, R3, R4, R5, R6, HA, H1, H2, H3, H4, H5, H6, EA, E1, E2, E3, E4, E5,E6, rA, r1, r2, r3, r4, r5, r6, hA, h1, h2, h3, h4, h5, h6 and h7). Samples is the number of samples that are acquired during acquisition of a single reading. Increasing the number of samples will increase acquisition time and improve noise levels and effective resolution. Valid number of samples is between 2 and 40 . Default number of samples is 15 , resulting in the same acquisition sequence as in continuous measurement. Connection is the connection configuration, valid values are DF (default 4 wire connection for resistance measurement and voltage connectors for emf measurement), 3W (3-wire connection for resistance measurement), 2W (2-wire connection for resistance measurement) and AX (auxiliary connection on current connectors for emf measurement). Note that some UT-ONE models support only default connection. Probe index specifies the probe that is used to convert raw value to corrected value. Valid values are 0 to 48.
Command returns immediately and does not wait for the single reading to be completed. The result of single reading can be retrieved with the S ? command. The response message returns the real time value and channel label of the measurement result, which can be used to synchronize single reading retrieval.
If reference channel is specified, a compatible external standard must be defined using configuration window 8. External standards and connected to the specified channel, otherwise error E2 will be reported.
If UT-ONE is making continuous measurements, they will be stopped immediately and single reading acquisition will start. Note that continuous measurement will not be automatically restarted after single reading is complete. If UT-ONE is already acquiring a single reading, ongoing single reading operation will not be interrupted and command will return error E6.

```
Command message: S<Channel><Reference Channel><Range><Samples>
Response message: OKRT:< Real time value >,Bx
Example:
Command message: SB1 B3 R315DF21
Response message: OKRT : 0457654321,B1
LabVIEW driver: UT-ONE Single Reading Driver.vi
```


5.5.11.2S?

Returns the result for the last completed single reading. Note that the command returns data immediately and does not wait for any ongoing single-reading measurement to complete. You may compare the timestamp and channel in the command response that started the single reading to avoid reading the older value. Result of single reading is valid until next single reading is completed, so it is possible to start a new reading before the results of previous single reading are read.
This command always returns raw value expressed in ohms for resistance or $\mu \mathrm{V}$ for emf.
Command message: S?
Response message: OKRT :<Real time value $>, \mathrm{Bx}:<$ Channel Bx raw value >
Example:
Command message: S?
Response message: RT : 0652829943,B1 :+1.99996088000E+04
LabVIEW driver: UT-ONE Single Reading Driver.vi

5.5.11.3SV?

Returns the result for the last completed single reading. Note that the command returns data immediately and does not wait for any ongoing single-reading measurement to complete. You may compare the timestamp and channel in the command response that started the single reading to avoid reading the older value. Result of single reading is valid until next single reading is completed, so it is possible to start a new reading before the results of previous single reading are read.
This command always returns raw value expressed in ohms for resistance or $\mu \mathrm{V}$ for emf. Temperature value is converted using the probe index specified in the command used to initiate single reading.

Command message: SV?
Response message: OKRT $:<$ Real time value $>, \mathrm{Bx}:<$ Channel Bx raw value $>\mathrm{Cx}:<$ Channel $C x$ temperature value >

Example:
Command message: SV?
Response message: RT : 0652829943,B1 :+1.99996088000E+04,C1
:+9.89901600000E+00
LabVIEW driver: UT-ONE Single Reading Driver.vi

5.5.11.4SA?

Return all data for the last completed single reading including real time value, raw channel value, channel value, measurement range, connection configuration and probe index. Note that the command returns data immediately and does not wait for any ongoing single-reading measurement to complete. You may compare the timestamp and channel in the command response that started the single reading to avoid reading the older value. Result of single reading is valid until next single reading is completed, so it is possible to start a new reading before the results of previous single reading are read.

[^0]
5.5.11.5S<Probe index>?

Returns the result for the last completed single reading and converts it to temperature using specified probe data. Note that the command returns data immediately and does not wait for any ongoing singlereading measurement to complete. You may compare the timestamp and channel in the command response that started the single reading to avoid reading the older value. Result of single reading is valid until next single reading is completed, so it is possible to start a new reading before the results of previous single reading are read.
This command returns raw value expressed in ohms for resistance or $\mu \mathrm{V}$ for emf and a temperature value in ${ }^{\circ} \mathrm{C}$, as converted using the specified probe. If you specify invalid or undefined probe, command does not perform any conversion and returns raw data for both $B x$ and $C x$ channels. You may specify standard and user-defined probes.

Command message: $\mathrm{S}<$ Probe Index>?
Response message: OKRT $:<$ Real time value $>, \mathrm{Bx}:<$ Channel Bx raw value $>, \mathrm{Cx}:<$ Channel $C x$ temperature value >

Example:
Command message: S21?
Response message: OKRT : 0496406082,B1 :+9.99996000000E+01,C1 :-1.02346273190E-03

LabVIEW driver: UT-ONE Single Reading Driver.vi

5.5.12 Real time clock commands

5.5.12.1T?

Returns the current value of real time. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000.
Command message: T?
Response message: $\quad \mathrm{OK}<$ Real time value >
Example:
Command message: T?
Response message: OK+0457659060
LabVIEW driver: UT-ONE Rea/TimeClock Driver.vi

5.5.12.2 $\quad T<$ Real time value >

Sets the new value of real time. Real time value is given as unsigned integer, which specifies the number of seconds elapsed since 01.01.2000.

Command message: $\mathrm{T}<$ Real time value $>$
Response message: OK
Example:
Command message: $T+0457659065$
Response message: OK
LabVIEW driver: UT-ONE Rea/TimeClock Driver.vi

5.5.13 Raw ADC commands

This group of commands provides direct access to the acquired raw ADC binary values prior to any linearization or characterization procedures. It is primarily used for fast digitizing procedure and for advanced validation purposes.

5.5.13.1B?

Return the binary block with binary values directly from analog to digital converter (ADC). Each block contains up to 40 ADC readings. This command is useful only for troubleshooting and advanced applications, as well as for reading the data in digitizing acquisition mode.

Command message: B?
Response message: \#<binary block size>\{<binary block data>\}OK<Measurement range label>
Binary block data consists of:

- ADC buffer index (0×00 or 0×80) (1 byte)
- Channel index ($0 \times 00=\mathrm{C} 1,0 \times 01=\mathrm{C} 2$ and $0 \times 02=\mathrm{C} 3$, etc) (1 byte)
- Real time clock in binary format, expressed as number of seconds since 1.1.2000 (4 bytes)
- Cold junction temperature in displaced binary format (4 bytes)
- $\quad \mathrm{N}$ uncorrected ADC readings in displaced binary format ($\mathrm{N} * 3$ bytes)

Example:
Command message: B?
Response message: \#055\{ 8000 AB88 451B F6F4 7C01 B7D6 4CB9 D64C B3D6 4CB4 D64C B1D6 4CAE D64C BBD6 4CB6 D64C B5D6 4CBF D64C BED6 4CB8 D64C B5D6 4CB3 D64C A8D6 4C \}OKR4
LabVIEW driver: UT-ONE Digitizing Driver.vi

5.5.14 Validation commands

5.5.14.1Xx < BCD numeric >

Sets the new value of BCD numeric in BCD buffer Xx . Xx can be $\mathrm{X} 1, \mathrm{X} 2$ or X 3 . BCD buffers are used for testing of arithmetic and conversion functions.

```
Command message: \(\mathrm{Xx}<B C D\) numeric >
```

Response message: OK
Example:
Command message: X1+1.23456789012E-34
Response message: OK
LabVIEW driver: Not available

5.5.14.2 X<Operation >?

Perform an arithmetic operation or conversion function with arguments in BCD buffers and return the result. This command is used for testing arithmetic operations and conversion functions. Before executing this command, store the argument in the BCD buffers X1 and/or X2. Available operations are:

- M multiplication
- D division $\mathrm{X} 3=\mathrm{X} 1 / \mathrm{X} 2$
- A addition
- S subtraction
- R decrement
- I increment
- L natural logarithm
- E exponential function
- H dew point
- K square root
- 1 return X1
- 2 return X2
- 3 return X3

$$
\begin{aligned}
& \mathrm{X} 3=\mathrm{X} 1 * \mathrm{X} 2 \\
& \mathrm{X} 3=\mathrm{X} 1 / \mathrm{X} 2 \\
& \mathrm{X} 3=\mathrm{X} 1+\mathrm{X} 2 \\
& \mathrm{X} 3=\mathrm{X} 1-\mathrm{X} 2 \\
& \mathrm{X} 1=\mathrm{X} 1-1 \\
& \mathrm{X} 1=\mathrm{X} 1+1 \\
& \mathrm{X} 3=\ln (\mathrm{X} 2) \\
& \mathrm{X} 3=\exp (\mathrm{X} 2) \\
& \mathrm{X} 3=\mathrm{Sonntag} \text { function(} \mathrm{X} 1, \mathrm{X} 2) \\
& \mathrm{X} 3=\operatorname{sqrt}(\mathrm{X} 2) \\
& \mathrm{X} 1=\mathrm{X1} \\
& \mathrm{X} 2=\mathrm{X} 2 \\
& \mathrm{X} 3=\mathrm{X} 3
\end{aligned}
$$

Command message: $\mathrm{X}<$ operation >
Response message: $\mathrm{OK}<B C D$ result >
Example:
Command message: XR?
Response message: OK-1.00000000000E+00
LabVIEW driver: Not available

5.5.14.3 XC<Channel name >?

Performs a conversion to corrected temperature or relative humidity for the specified channel. Note that the same probe coefficients and settings are used as for the real conversion in acquisition sequence. Before executing this command, store the raw value (resistance, emf, uncorrected temperature or uncorrected relative humidity) for the channel in the BCD buffer X1. If internal CJC temperature is applicable, store it in the BCD buffer X2. Channel names can be in either short or long format.

```
Command message: XC< Channel name > ?
Response message: OK<BCD result >
Example:
Command message: XCC01?
Response message: OK-1.02500000000E+01
LabVIEW driver: Not available
```


5.5.14.4 XP<Probe index >?

Performs a conversion to corrected temperature for specified probe. Note that the same probe coefficients and settings are used as for the real conversion in acquisition sequence. Before executing this command, store the raw value (resistance or emf) in the BCD buffer X1. If internal CJC temperature is applicable, store it in the BCD buffer X2. If probe is invalid or undefined, no conversion is performed and command returns the unchanged raw value.

Command message: $\mathrm{XP}<$ Probe index $>$?
Response message: $\mathrm{OK}<B C D$ result >
Example:
Command message: XP21?
Response message: $\mathrm{OK}+1.14500000000 \mathrm{E}+02$
LabVIEW driver: Not available

6 Measurement Modes

UT-ONE is designed to provide the user with greatest possible flexibility, so it provides four different measurement modes for measurement on three main channels. Note that only one measurement mode can be active at any given time. Also, some measurement modes can only be activated using the remote communication interface and computer software.
Ambient channels are continuously acquired in the background, independently of the measurement mode of main channels. TI channel is acquired only in combination with an acquisition of a main channel, so its refresh rate is not guaranteed.

6.1 Continuous measurement mode

Continuous measurement mode is the basic measurement mode, which supports the operation via user interface and remote communication interface. User must first configure the channels using the 1 . Main Channels Configuration window or equivalent remote communication interface commands. Note that you may enable any number of main channels, including none.
The acquisition starts after you touch the green START button in the measurement window. Channels are acquired sequentially from the lowest channel index to the highest channel index. Disabled channels are skipped without any additional delay. If all main channels are disabled, only ambient channels are acquired at 4 second acquisition rate.

Measurement result in continuous measurement mode is assembled after the last main channel in acquisition sequence is completed. Current values of ambient channels are appended and the combined result is displayed in user interface, logged to the internal SD card and is available on remote communication interface.
Continuous measurement mode can be stopped manually using the red STOP button in the measurement window. The ongoing measurement is discarded and UT-ONE enters idle mode immediately. Also, initializing any other measurement mode will stop continuous measurement.
Auto-start setting can be used to specify the state of the continuous measurement mode at UT-ONE startup. UT-UNE can be configured to start with continuous measurement mode started, stopped or the same as during the last UT-ONE shutdown.

6.2 Single-reading mode

Single-reading mode is a measurement mode, used primarily for creating computer applications for automation of calibration and test procedures. Single-reading mode can only be initialized using the remote communication interface.

Single reading is initialized remotely using the " S " command. User must specify one of the main channels, the measurement range and the number of samples. Refer to the command description for more details. This command only initializes the single-reading measurement, it does not wait for acquisition to complete. The returned value gives the timestamp and channel label of the incoming single-reading result.
The result of the single reading operation is obtained using the "S?", "SV?" or "SA?" command. Note that this command returns the last result of a single reading acquisition. Use the timestamp and channel information obtained during the single-reading initialization to synchronize single-reading initialization and result retrieval.
Alternatively, you can use the "S<Probe index>? command, which will also convert the acquired raw reading using the specified probe.

Initializing a single reading will stop the continuous and digitizing measurement mode. However, if there is an ongoing single-reading acquisition, initializing another single-reading acquisition will fail with E6 error. The previously initialized single-reading acquisition will complete normally.
The result of a single reading is valid until the next single reading is completed. This means that initializing a single reading before reading the previous result is valid. This is important in multiapplication environment.
After the single reading is completed, UT-ONE returns to idle measurement mode.
Measurement obtained in single-reading mode are not displayed on UT-ONE display and are not logged in the internal UT-ONE SD card.
Single reading measurement mode is particularly useful for creating computer applications that acquire measurements from UT-ONE channels according to any custom measurement procedure. Also, single reading mode can be used to effectively expand the number of input channels using an external multiplexer. In this case, use the following procedure:

- Stop any ongoing measurements or wait for them to complete
- Set the external multiplexer to requested channel and wait for it to settle
- Initialize a single reading
- Wait for the single reading to complete
- Read the result of a single reading
- Release the channel on the external multiplexer

6.3 Single-reading mode with external standard

Accuracy of the UT-ONE measurement can be improved using the external standard, which is connected to one of the three main channels. Application of external standard is available only as an option in the single reading measurements. Continuous and digitizing measurements do not support application of external standard.
Single readings with external standard are initialized and read using the same procedure as normal single reading. In the initialization command, you have to specify the channel on which the external reference is connected. A compatible external reference must be defined in the 8. External Standards configuration window.
Single reading with external standard is performed in three steps:

- A normal single reading on measured channel is performed and result is stored internally.
- Another single reading is performed on specified reference channel and result is stored internally. If applicable, temperature coefficient of the external standard is automatically implemented to correct any temperature drifts.
- The reading of the external standard is compared to its reference value and the difference is used to correct the reading on the measured channel. This removes any short-term and longterm drifts. The resulting reading on measured channel is made available for reading over communication interface.
The application of external standard requires two internal single readings, so the total acquisition time is doubled. Also, the reading of external standard will introduce additional noise into the combined measurement result, so noisier measurements can be expected. To compensate for this increase in noise, you may choose to increase the number of samples per single reading, thus increasing acquisition time.
Optimal result in measurements with external standard can be achieved when a manual measurement range is specified and the value of the external reference is close to the range nominal limit. For example, when using Pt- 25 probes over entire range, it is recommended to use manual measurement range R3 ($100 \Omega, 1 \mathrm{~mA}$) and an external reference resistor with nominal value of 100Ω. As another example, for $\mathrm{Pt}-100$ probe up to $250^{\circ} \mathrm{C}$, it is recommended to use measurement range R4 ($200 \Omega, 1$ mA) and external reference resistor with nominal value 200Ω. Using reference resistors with values that are considerably lower than the nominal limit of measurement range will result in higher increase in measurement noise. Use of reference resistors with value less than 25% of the nominal limit of the measurement range is not recommended.

Alternatively, you may also use auto ranging feature with measurements with external standard. In this case auto ranging is performed independently for measured and reference channel, so optimal range is selected for each reading. This will result in optimal noise performance regardless of the reference resistor value (any value between 25Ω and 800Ω is suitable for PRT measurements). However, when different measurement ranges are chosen for the measured and reference channel, this results in only partial elimination of drift errors.
External standard feature is supported for PRT, thermistor and thermocouple measurements, but it is primarily advantageous for PRT measurement, where short-term and long-term drifts are the dominant source of error for the thermometer readout. For thermistors, external standard will reduce the drift error as well, but even without the external resistor, accuracy on the level of 1 mK is achievable, so further reduction is meaningless in most practical cases. For thermocouples, application of external standard may not be straightforward, as parasitic emf may obscure any potential benefits. Although Batemika does not promote the use of external standards for thermocouples, we live this option open for user investigation.

6.4 Digitizing measurement mode

UT-ONE supports a special measurement mode, which allows fast digitizing with a fixed measurement range on one main channel. This mode is applicable only using commands via remote communication interface. In this mode, you can take from 4 to 470 raw samples per second directly from the ADC output. In this mode, there is no current reversal for resistance measurements, no temperature coefficient correction and no linearity correction. For sampling rates above 50 Hz , there is also no suppression of mains frequency interference. The resulting accuracy is therefore significantly worse than accuracy specified for other measurement modes and this results should never be used to make absolute temperature measurements.
Digitizing measurement mode has two possible applications:

- Observation of very fast temperature phenomena, where general behaviour is of interest, while absolute accuracy is not so relevant
- Using high sampling rates, existence of interference signals with mains frequency can be evaluated on probe inputs. This interference is normally filtered out by the UT-ONE algorithms, but it may have some residual effects. This is especially useful for troubleshooting on suspicious measurement results.
Digitizing mode can be programmed with commands described in the UT-ONE command set, but for convenience we recommend the use of digitizing application, available for free download from our website.

7 Batteries

UT-ONE B03B has a built-in Li-ion battery, which enables the use of the thermometer in standalone configuration without external power supply. Additionally, UT-ONE B03B has a small button Lithium battery for keeping track of real time clock.

7.1 Internal Li-ion battery

UT-ONE B03B features an internal Li-ion battery with the capacity of 3000 mAh (11.1 Wh).
The current state of charge of the internal Li-ion battery is displayed in the top right corner of the display and can be queried using the MB? communication-interface command. State of charge is expressed in \% of full capacity.
Internal Li-ion battery is automatically recharged when the external power supply is connected. There is no need to remove the batteries and use the separate external charger.
Li-ion batteries are sensitive devices, which are susceptible to overcharging, over discharging, short circuits, thermal shock and mechanical shock. UT-ONE features a double protection circuit to prevent overcharging, over discharging and short circuits. Avoid using or storing the device outside the $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ temperature range in order to prevent permanent damage to the device and particularly to the battery.
UT-ONE B03B has a software over discharge protection feature, which will shut down the device when state of charge falls below 5%. This safety margin allows the UT-ONE BO3B to be started for 60 seconds even if the battery is almost discharged. Note that the battery will continue to slowly self-discharge even if the device is switched off, so always recharge the battery before storage.
Li-ion battery is designed for typical operational life of 500 charging/discharging cycles. Note that the decrease of battery capacity during operational life is normal. New batteries have a typical tolerance of battery capacity within $\pm 15 \%$. Battery capacity and operational life depend heavily on conditions of use, especially temperature conditions and discharge profiles. UT-ONE B03B has a built-in cycle counter, which measures the number of performed charging/discharging cycles.

7.2 Lithium button battery

UT-ONE B03B has a small Lithium button battery (CR2032), which is used exclusively as a power backup for the real time clock. All other functions, including storage of calibration and configuration data are independent of the state of this battery.
This battery is not rechargeable. Normal operational life is up to 5 years, but this depends a lot on the conditions of use, ambient conditions and battery characteristics.
If your real time clock is continuously being reset at startup of UT-ONE B03B, the battery is exhausted and needs to be replaced.

8 UT-ONE Applications Software

UT-ONE Applications is a software package for control and configuration of the UT-ONE thermometer readout via the remote communication interface. The aim of the UT-ONE Applications software is to provide a convenient general-purpose interface to the UT-ONE functionality from computer screen. UT-ONE Applications also demonstrate the capabilities of the UT-ONE thermometer readout and may be used as the starting point for developing user applications, covering a specific measurement solution.

UT-ONE Applications software is applicable to all models of the UT-ONE family of thermometer readouts, so certain features may not be available for your particular UT-ONE model.
UT-ONE Applications is based on LabVIEW platform and is distributed as an executable installer, so LabVIEW development environment or any other additional licenses are not required.
UT-ONE Applications software package is available for free-of-charge download at www.batemika.com. UT-ONE Applications is licensed for use only with the UT-ONE thermometer readouts. LabVIEW source code for selected applications and drivers is available on request for qualified customers. Development of derivative applications by the end-user is allowed only for use with UT-ONE thermometer readout. Commercial distribution of derivative applications to third parties is not allowed without a written permission from the Batemika.

Figure 61: UT-ONE Applications launch panel
UT-ONE Applications starts with the launch panel, which enables the launching of individual applications. Applications may safely run in parallel, however some of the UT-ONE operations may interfere with each other, so some caution is required. After you launch the applications, you may safely close the launch panel and continue to use the launched applications. Launch panel can be reopened from the applications using the UT-ONE Applications button.
Interface, Probe Calibration Demo, Climatic Chamber Validation and Temperature Monitoring applications allow you to start and execute more than one instance of the application at the same time. To start another instance of the application, use the associated button in the UT-ONE Applications launch panel.
This user manual can be accessed in pdf format by clicking the User Manual button.

UT-ONE B03B

3-Channel Thermometer Readout

After you launch one of the UT-ONE applications using the launch panel, the application will first try to automatically establish the communication with UT-ONE using the last successfully used communication interface. If communication interface has not been selected before, or the communication with UT-ONE can't be established, the application will automatically switch to UT-ONE page and paint the UT-ONE Communication interface control to red. Use the right-click button to activate the popup menu with the list of available communication interfaces, which include USB interfaces, serial interfaces and GPIB interfaces.
After you select a communication interface from the list, the application will attempt to establish communication with UT-ONE over the selected interface. If communication is successfully established, the UT-ONE Communication interface control is painted grey and UT-ONE information is retrieved and displayed.
If communication is not established over the selected interface, UT-ONE Communication interface control will remain red and UT-ONE information will not be displayed. Check that communication cables are properly attached and that UT-ONE is switched. Also, check if any other application (outside UTONE Applications) is currently communicating with UT-ONE and has consequently locked the communication interface.
To change the interface or UT-ONE device after the communication was already established using the default interface, click the Change Interface button. The application will restart with blank Communication Interface box and you will be able to reselect it. Note that any data acquired so far using this application will be lost.

Figure 62: UT-ONE page before communication with UT-ONE is established

Figure 63: UT-ONE page after communication with UT-ONE is established

8.1 UT-ONE Interface

UT-ONE Interface is the application that implements the UT-ONE user interface on computer screen. The pages and views are organized in a similar way as in the UT-ONE B03x display, so the use is intuitive. UT-ONE Interface application is also applicable to models without display, but in this case functions that are related to UT-ONE display, internal logging and battery are not applicable.
Measurement can be controlled from the UT-ONE B03x display and from the UT-ONE Interface application at the same time, and both will adapt to the changes in the other interface.
You can choose between the Measurement and Configuration page using the tab selectors on the right-hand side of the window. You can choose between different views using the tab selectors on the top of the window. Measurements in continuous mode can be started and stopped using the green/red button in the bottom of the window. Clearing the readings will clear the readings from the graph, but not from the UT-ONE B03x display. You can download the readings that were logged in the UT-ONE B03x display memory using the Download Measurements button. Measurements in the graph can be exported to the text file, which is formatted for direct import in MS Excel.

Figure 64: UT-ONE Interface mixed measurement view

Figure 65: UT-ONE Interface selection of temperature unit

UT-ONE B03B

3-Channel Thermometer Readout

Temperature values on the graph can be displayed in ${ }^{\circ} \mathrm{C}, \mathrm{K}$ or ${ }^{\circ} \mathrm{F}$. Use the right-click to display the popup-menu and select the menu command for required unit. You can also choose to display raw values of main channels (resistance or emf) in units of Ω or $\mu \mathrm{V}$, or the relative humidity. You can also display A / l values on the graph, regardless of the unit (for example you can display temperature, relative humidity, resistance and emf values). In this case, the scale is just a numeric value without a particular unit designation.
Temperature units on the numeric indicators can also be changed between ${ }^{\circ} \mathrm{C}$, K and ${ }^{\circ} \mathrm{F}$ using the Units button.
UT-ONE Interface application by default displays the last measured values. Note that values are updated only if the continuous measurement is started. You can also choose to display the measurement statistics, which include minimum measured value, maximum measured value and the difference between the maximum and minimum measured value. Statistics is calculated from all values displayed on the graph. Statistics can be reinitialized by clicking the Clear button, which will also clear all data on the graph.

Figure 66: UT-ONE Interface statistics display
Measurement values from the main channels can be presented as the temperature difference between the channel value and the reference channel value. Reference channel can be selected using the command in the popup menu. Reference channel is marked with label Cxx and displays actual temperature value, difference channels are marked with label Dxx and display temperature difference in selected temperature unit. This is not applicable to ambient probe and TJ channels.

Figure 67: UT-ONE Interface channel difference display

Figure 68: UT-ONE Interface Raw Reading display
UT-ONE Interface can display raw readings for the last acquired measurement. Note that this does not apply to readings on the graph, just to the displayed numeric values in Mixed View. For main channels the raw reading is the acquired probe resistance or emf in ohm or $\mu \mathrm{V}$. For ambient probe, raw reading is displayed in \%rh or ${ }^{\circ} \mathrm{C}$, but before the probe corrections are applied. Raw readings can be used for diagnostics and validation, and also during the probe recalibration procedure.
UT-ONE Interface application can display readings on a large graph in the Graph View display. All graph settings can be configured in the Mixed View display and are automatically applied after you change the view.

Figure 69: UT-ONE Interface Graph View
UT-ONE Interface application can display readings just as numeric values with a large font for easy reading. Values of up to four channels can be observed at the same time and you can use the vertical slider to view more channels if available. You can choose between observing the values of main channels and ambient probe readings using the page selector.

Figure 70: UT-ONE Interface Numeric View
UT-ONE Interface application can also display measurement results for each channel separately and with all associated information, including the last measured value, raw value, statistics, probe information and measurement range. You can use page selectors to choose between available channels.

Figure 71: UT-ONE Interface Channel View

UT-ONE B03B

3-Channel Thermometer Readout

Configuration page has similar views as in the UT-ONE B03x user interface. User can change channel configuration, check the battery status and version information, synchronize UT-ONE time with the computer time, manage probe and range data, and take a snapshot of the UT-ONE display.

Channels view allows you to configure main channels in the continuous-measurement mode. It is recommended to select the probe first and the application will automatically select the default measurement range. Alternatively, you may also select a Not Defined empty probe and in this case you can select any measurement range with results presented without conversion to temperature. When you make the changes to UT-ONE channel configuration, a green Save button and a red Cance/button are displayed. Note that changes are applied only after you click the Save button. If you change channels or views, changes will be lost without warning.

Figure 72: UT-ONE Interface Channels view
Powerview present the information about the battery status (if available) and the power source. There are no configurable options available in this view.

Figure 73: UT-ONE Interface Power view

UT-ONE B03B

3-Channel Thermometer Readout

Time view allows you to compare internal UT-ONE real-time clock with the computer clock. Internal clock may drift for a few seconds per day, so by clicking the Synchronize Time button you can set the device time to the computer time. The time and date format is determined by your computer Regional Settings, so the application window may look slightly different than the figure bellow.

Figure 74: UT-ONE Interface Times view
User probes can be conveniently reviewed, deleted and edited in the Probes view. This enables you to use copy/paste operation to enter coefficient, therefore reducing the possibility of typing errors. Commands for probe manipulation are available in the popup menu. You can also save the probe data in a file, so it can be used as a backup or to be distributed to another UT-ONE device. Probe data can be saved as individual probes or as a group of all probes. Saving all probes in as single file provides a convenient way to use the same UT-ONE device with different probe sets.

Figure 75: UT-ONE Interface Probes view with probe editing dialog

3-Channel Thermometer Readout

Ranges view can be used for reviewing UT-ONE internal calibration constants.

Figure 76: UT-ONE Interface Ranges view
Screen view can be used to acquire a screenshot of the image currently displayed on the UT-ONE built-in display. This feature is only applicable for UT-ONE models with screen. Acquired image can be saved in an image file and can be used for diagnostics or achieving purposes.

Figure 77: UT-ONE Interface Screen view

3-Channel Thermometer Readout

External Standards view is used to manage the properties of external standards that can be used to improve the accuracy of measurements in single-reading measurement mode. Use buttons in this view to store that to and from internal UT-ONE non-volatile memory and to store them in files on a computer.

Figure 78: UT-ONE Interface External Standards view
UT-ONE view is used to select the UT-ONE communication interface and consequentially the particular UT-ONE device, if more UT-ONE devices are connected to a computer. After the communication is established, the application retrieves serial number and other device information from the device.

Figure 79: UT-ONE Interface UT-ONE view

8.2 UT-ONE Probe Calibration Demo

UT-ONE Probe Calibration Demo application is a simple and convenient tool for calibration by comparison of platinum-resistance, thermistor and thermocouple probes. This application performs the acquisition, data analysis and optionally stores the results to the UT-ONE non-volatile memory.
This application is a limited demo version of the Batemika calibration software, as it enables the calibration of only one probe at the same time, it has no uncertainty calculation and no printing of calibration certificates. Contact Batemika to get more information about the full version of our custommade calibration software.
Calibration by comparison of a temperature probe is performed by placing a reference thermometer and a unit under test in stable and homogeneous calibration medium, typically a calibration bath, furnace or climatic chamber. The reading of the unit under test is then associated with the temperature measured with the reference thermometer. This is repeated at several calibration points within the required temperature range. Calibration points are then used to calculate calibration coefficients for the particular probe characterization.
The reference thermometer must be connected to one of the UT-ONE main channels and must be properly configured to measure true temperature. Make sure that probe data for the reference thermometer is valid.
Unit under test must be connected to one of the remaining UT-ONE main channels and must be configured to measure the resistance or emf. In most cases, it is most convenient to use the auto range for the Pt-100, thermistor or thermocouple. Selecting the UUT probe is recommended, as it will be used to indicate approximate UUT temperature and it is used in the visualization of results in data analysis. Note that UUT probe selection has no direct effect on final calibration results. If you are recalibrating the UUT, and the results of the previous calibration are stored in UT-ONE probe list, you can select the existing probe characterization, otherwise select one of the predefined probe characterizations that best fits your probe.

Figure 80: Acquisition window
Calibration uncertainty can be improved by using the external standard, which must be connected to one of the remaining UT-ONE main channels (C1, C2 or C3). To enable the use of external standards, go to the External Standards page and check the Enable External Standards checkbox. Verify that the correct external standards are set up and saved to the UT-ONE internal memory. You can now select the external standards in the channel configuration for the reference and UUT probe. Note that external standards must be enabled and set up before you make the first measurement.
Acquisition can be started using the Start/Stop button in the bottom of the window. Measurements are acquired in the single-reading mode. If there is a problem with the acquisition, the Status box will

UT-ONE B03B

3-Channel Thermometer Readout

display the error message. Readings can be cleared from the graph using the Clearbutton. Application uses the specified number of readings to calculate the mean value and standard deviations. Specify the calibration point (nominal temperature) in the Calibration Point input box for each calibration medium setting. After the application acquires the specified number of readings, Save Calibration Point button becomes active and you can manually save the current measurement to the calibration point list.
After you save the calibration point, the application automatically displays it in the Calibration Points list, so you can review it. Note that you can make several calibration points at on temperature. You can later select/deselect each calibration point or even delete it from the list. Note that only selected calibration points (with the checkmark in the calibration point list) are used in the data analysis.
Calibration points can be selected/deselected and deleted using the popup menu on the calibration points list.
After you acquire all calibration points, you can start with the data analysis. First select one of the available probe types for your probe characterization. If applicable, select the function order for the fitting procedure. Application will automatically calculate the probe coefficients and display them in the New Probe Data box.
If you would like to save the probe data to UT-ONE non-volatile memory, enter the Probe Name and select an empty user-defined probe location. Note that any previous probe data at selected location will be overwritten. Click the Save to UT-ONE button to save the results to UT-ONE non-volatile memory.

Figure 81: Data Analysis window with results of Pt-100 calibration
Calibration results can be conveniently visualized on a data analysis graph. The graph displays the currently acquired point as an orange ring, the selected calibration points as blue circles and the resulting probe characteristic as the light blue curve. You can view the data as the raw value (resistance or emf) against temperature, as fitting residuals or as a correction. Correction is calculated as the difference between actual values and nominal values according to selected UUT probe. Data visualization allows better evaluation of calibration results and detection of any faulty measurements.

Figure 82: Visualization of data analysis results for NTC 3k calibration

If calibration results are obtained externally and are presented as a set of temperature and resistance/emf pairs, you can use the Manual Calculation tab to calculate the calibration coefficients and store them directly to the UT-ONE non-volatile memory.
Calibration data can be entered by typing in the values for reference temperature and UUT resistance/emf directly to the Input Data. Alternatively, you can copy and paste data directly from Excel (one column of data for reference temperature and one column of data for UUT resistance/emf). After you entered the data, check the values in the Imported input data indicator to verify that data was entered and imported correctly.
Note that this feature can be used even without the UT-ONE unit connected to the computer. To start calculation without UT-ONE unit, select OFFLINE option in the Interface selection.
To start with data analysis, first select the Probe Template. This will enable more convenient data presentation in the graph and will limit the available probe types to applicable values only. Alternatively, you can also select No probe template option, which will allow you to select any probe type for data analysis.
Next, select one of the available probe types for the selected probe template. If applicable, set the function order of the equation used in the fitting procedure. Check calculated fitting residual error and verify on the graph that the fit curve traces the calibration points. If some of the points significantly deviate from the fit curve, check for typing errors and verify your calibration procedure.
If you would like to store the calculated probe data to UT-ONE non-volatile memory, you will have to enter the Probe Name and click the Write Probe to File button. This will store the probe data in a *.prb file. If UT-ONE unit is connected to the computer, you can now select the Probes tab and read probe data from file and save it to the selected location in the UT-ONE non-volatile memory.

Figure 83: Manual Calculation window with results of Pt-100 calibration

UT-ONE B03B

3-Channel Thermometer Readout

UT-ONE internal calculation of temperature from probe resistance or emf can be verified in the Testing tab. This allows the user to check the accuracy of the calibration coefficients and to validate the internal conversions.
Probe coefficients must be first stored in one of the probe locations in the UT-ONE non-volatile memory. Select the probe in the Probe testing dropdown list and review its data.
You can now enter raw value (resistance or emf) in the Raw Value in and the application will send it to the UT-ONE unit and return the converted temperature value. The application will also calculate the temperature in the application software (computer), so you can check if there are any differences.
The calculation in the UT-ONE unit is possible only from raw value to temperature. The inverse calculation from temperature to raw value is possible only in application software.
Additional check can be performed by generating 1000 random measurement points in the specified calibration range and observing the difference between the UT-ONE and application calculations for the selected probe. This will give you a good indication of the numeric error that can be expected from calculations in the UT-ONE firmware.
Equations for conversion of temperature probes tend to be simple in one direction and more complicated in the inverse direction. For example, CVD equation is very simple for calculation of resistance from temperature, but is complicated for calculation of temperature from resistance. The validity of conversion in both directions can be checked by selecting Difference between Forward and Backward Calculation. This is applicable only to conversions in the application software.

Figure 84: Testing window with results of Pt-100 calculation

8.3 UT-ONE Range Readjustment

UT-ONE Range Readjustment application is a tool for checking the internal drift of the UT-ONE measurement circuits and optional adjustment of the reference value for each measurement range. Note that adjustment removes the drift error, but it may also invalidate the traceability obtained from a UT-ONE calibration certificate, so depending on your requirements, a recalibration may also be required after readjustment procedure. If measured drift errors are within specified accuracy, it may therefore not be optimal to store them to UT-ONE non-volatile memory.
UT-ONE Range Readjustment application also feature a manual mode, which just measures and averages the raw value (resistance or DC voltage) on selected channel. The results are just recorded and there is no adjustment performed. This is a useful tool for the calibration of UT-ONE in an external calibration laboratory, especially for UT-ONE units with no display.
Range readjustment requires the connection of external standards, typically reference resistors or DC voltage sources. External standards must be connected to main channels and configured in the External Standards page before adjustment can start.
Range adjustment is always performed in three distinct levels:

- In the first level the value of configured external standards is measured and displayed in the list, together with the drift error in ppm. At this point there are no changes to UT-ONE and procedure may be stopped at any time. If you want just to check the drift of the UT-ONE, you should stop at this point
- In the second level, all or selected ranges with the READY TO SAVE status are stored to UTONE volatile memory. Changes take effect immediately, so the results of the adjustment can be observed. Note that at this point, if the UT-ONE is shut down, all changes will be lost and UT-ONE will return to original state
- In the third level, you may choose to save changes to non-volatile EEPROM memory in UTONE. Note that at this point changes are permanently stored and previous values may not be recovered.

Figure 85: External Standards page
The first step is the configuration of the external standards. For each external standard, you must specify the name, range set, reference value and temperature coefficient. Standard name is used just for the user convenience and has no effect on adjustment. Ranges selects the set of ranges for which the external standard is applicable. If external standard is not connected, you should select the Not used option. Reference Value specifies the true value of the external standard at $23^{\circ} \mathrm{C}$. Temperature coefficient specifies the temperature coefficient of the external standard, which allows the automatic temperature compensation of the external standard. If temperature compensation is not applicable, use

3-Channel Thermometer Readout

0. The source of temperature for automatic compensation can be selected in External Standard Temperature Compensation. You may choose between no compensation, internal TJ thermometer or optional ambient conditions probe TA.

External standards configuration has the same format as the external standards configuration used in UT-ONE to improve measurement accuracy, but it can be used independently, so you don't have to write to UT-ONE memory to become active for the scope of adjustment. Nevertheless, you may read or write external configuration to UT-ONE memory, as well as to *.esc files on your local computer.
After the external standards are configured, you may proceed to Adjustment page to start the adjustment. First select the set of ranges (Pt-100 ranges, thermistor ranges or thermocouple ranges) that you wish to adjust. The range list will be automatically populated with applicable measurement ranges. Note that range set must match the range set selected in the external standard configuration, otherwise external standard won't be used.
Next select the number of readings that are acquired and averaged for each range adjustment. The default value is 40 , which gives good results, but you may wish to choose higher or lower value according to your time and accuracy constraints.
Next select how the external standards are selected for each measurement range. You have three options:

- Auto-select external standards will select all external standards that are between 15% and 90% of the range reference value
- Use all applicable external standards will select all select all standards that are less than 100% of the range reference value
- Use highest applicable external standard will select only the largest external standard, which is less than 90% of the range reference value
Adjustment for a particular range will make measurements on one or more applicable external standards and use the weighted mean of all results, where external standards with higher value have a higher weight. If there is no applicable external standard for the particular range, an error will be reported and adjustment for the particular range will be stopped.

Figure 86: Adjustment page
Adjustment can be controlled using the popup menu on the range list. Popup menu consists of nine commands:

- Monitor Selected Range starts the acquisition for the selected range using the applicable external standards. Acquisition must be stopped manually using the popup menu command.
- Adjust Selected Range clears any existing data for the selected range, starts the acquisition using the applicable external standards and acquires specified number of readings. After the acquisition is completed, adjusted range is ready to be saved to UT-ONE memory.
- Adjust ALL Ranges schedules all ranges for adjustment procedure.
- Stop Acquisition stops the acquisition and clears and scheduled ranges

3-Channel Thermometer Readout

- Clear Selected Range clears the readings and status for the selected range
- Clear ALL Ranges clears the readings and status for all ranges
- Save Selected Range sends the adjusted reference value for the selected range to UT-ONE volatile memory
- Save ALL Ranges sends the adjusted reference value for all applicable ranges to UT-ONE volatile memory
- Export Data to Clipboard copies data presented in the range list to clipboard. Data is available for pasting to applications such as Notepad, MS Excel or MS word.
Measurements for the selected range are presented in graph and in numeric indicator.
Measurement Ranges page displays the information about calibration coefficients for all available ranges that are stored in the UT-ONE volatile memory. You can manually change the reference value for the selected range by double-clicking it or by using the popup menu command.
Measurement ranges can be written or read from a *.rng file on your local computer using the popup menu commands. It is recommended that you make a backup copy of the coefficients before you make the adjustment, so you can restore the previous state in case of a failed adjustment. Range coefficients in the *.rng file can also be used to evaluate the drift between consecutive adjustments.
Use the Export Data to Clipboard command in the popup menu to copy the data in the list to clipboard.
After you make any changes to range coefficients in the UT-ONE volatile memory (either manually or using the adjustment procedure), the green Save to EEPROM button and red Discard Changes button will appear. Use the Save to EEPROM button to permanently save the changes to UT-ONE non-volatile EEPROM memory. Use the Discard Changes button to restore the range coefficients from the nonvolatile memory and therefore discard any changes in the volatile memory.

Figure 87: Measurement Ranges page
Drift page allows you to review the drift between the adjustments for the selected ranges. Use the popup menu to load range coefficients from the older *.rng files.

Figure 88: Drift page
The Adjustment page provides a fully automated procedure for routine readjustments and calibration checks for the UT-ONE thermometer readout. However, in many practical situations, especially when UT-ONE is sent to calibration in an accredited calibration laboratory, the setup of external standards and the complete adjustment procedure may be too complex, so a simpler alternative is provided in the Manual Calibration page.
To perform manual calibration, connect the reference resistance or DC voltage to one of the main channels and select that channel in the Channe/ dropdown list. Next select the manual range from the Range dropdown list. For resistance ranges you may also choose between the normal and reduced current. Click the green Start button to start the acquisition with given settings. The green Start button will change to red Stop button, which can be used to stop acquisition.
The acquired readings are displayed on the graph and in the numeric indicator. Average and standard deviation of the last N readings are calculated and displayed. N is specified in the Averaging input box.
Use the Clear Graph button to clear readings from graph and averaging memory.
You may change the channel and range during the acquisition. If you change the range between resistance and voltage ranges, readings are automatically cleared.
You can perform acquisition on either Adjustment or Manual Calibration page, but not on both at the same time. When you start acquisition, acquisition on the other page will be automatically stopped.
The displayed average reading for the selected range can be compared to the reference value of resistance or DC voltage standard and reported on the calibration certificate.

Figure 89: Manual Calibration page

8.4 UT-ONE Digitizing

UT-ONE Digitizing is the application for fast acquisition of raw data on temperature probes, connected to UT-ONE main channels. This application takes advantage of the special UT-UNE feature, which enables direct transfer of raw samples from the ADC to the USB interface. This feature enables fast sampling (digitizing) with up to 470 samples per second. Note that measurements in this mode have reduced accuracy and resolution, and there is no temperature coefficient correction, linearity correction, EMI rejection and parasitic emf compensation.
UT-ONE Digitizing application is primarily used to capture fast temperature transients in various temperature-related tests and experiments. Also, if you suspect your measurement configuration is prone to electromagnetic interference, you can analyses the raw samples before they are digitally filtered, so you can observe any traces of mains frequency interference.
This application is applicable only with communication via USB interface.
After launching the UT-ONE Digitizing application, select the USB interface, channel, measurement range and sampling frequency. Note that auto ranging is not supported in digitizing mode, so select an appropriate manual range.

Figure 90: Settings for UT-ONE Digitizing application
Digitizing can be started using the green Start Digitizing button. Application will automatically switch to Digitized Data page and display acquired samples on graph. Note that samples are transferred in groups of 40 samples, so if low sampling frequency is selected, it may take up to 10 seconds to refresh the graph.
UT-ONE Digitizing application can display up to 65536 samples, which is approximately 140 seconds at the highest sampling frequency. After reaching this limit, older samples are discarded.

Figure 91: Observing of fast transients in digitizing mode
Noise Spectrum page presents the frequency spectrum of the acquired samples. This feature is especially useful for detecting any interference signals that are being acquired on the thermometer input. Most commonly, this effect is detected with unshielded thermocouple wires located near highpower electrical machines.

Figure 92: Noise spectrum with considerable 50 Hz interference

8.5 UT-ONE Communication Testing

UT-ONE Communication Testing is a simple application, which is used to directly establish the communication with the UT-ONE and to test the syntax of the commands and responses in the UT-ONE remote command set.
Enter the UT-ONE command in the Command in input box in ASCII text format. Optional binary data can be entered in the Binary Block in array for some commands. Note that the terminating line feed character is appended automatically. Send the command to UT-ONE using the Execute Command button. The application will generate the command, display it in the Actual Data sent box and send it to UT-ONE. After UT-ONE sends the command response, the application will display it in the Actual Data received box and extract the command status, ASCII text response and binary block. Application will also measure the time required to send, process and receive the command and display it in the Execution time box.
To check the precise timing and the performance of UT-ONE interface, you may click the Execute Command 1000 times button, which will execute the specified command 1000 times and display the average execution time. The application will display a progress bar with the number of errors and total number of messages. If the

Figure 93: UT-ONE Communication Testing

8.6 UT-ONE Log Viewer

UT-ONE Log Viewer is a support application, which allows the user to browse the contents of the UTONE internal logging memory.
You may use the Log Viewer application during measurements, but this will result in slower datatransfer rates and newly acquired data will not be automatically refreshed.

Depending on your UT-ONE model, the device may support logging to internal SD card, internal flash memory or both. Logging to internal SD card is only supported on device with built-in display (UT-ONE B03A and UT-ONE B03B). Logging to internal flash memory is only supported on UT-ONE SxxB and selected UT-ONE B03B devices.

8.6.1 Logging to internal SD card

Internal SD card logging memory consists of 67108864 memory locations, which is equivalent to more than four years of logging at 2 seconds sampling rate. Each memory location can store the reading timestamp and temperatures/relative humidity for 7 channels. For UT-ONE B03A/B this corresponds to temperatures for three main channels, relative humidity, air temperature and dew-point temperature for the optional ambient probe and temperature of the internal CJC thermometer. Besides this main data log, UT-ONE logs also the raw data for each channel and statistics for blocks of 16 and 256 readings, which include average value, minimum value, maximum value and a time index. This auxiliary data is also accessible.
After you launch the application, you must first specify the VISA resource name for the communication interface to your UT-ONE device. If the application successfully detects a UT-ONE on the last used interface, this interface is automatically selected and no user interaction is required.
Log Viewer application first loads a preview of logged readings and displays it on the Preview graph. Preview load starts with the most recent readings and proceeds to older readings. If there is an overwhelming quantity of logged readings, you may click the Stop Streaming button to stop preview loading as soon as the date of interest is loaded.
Use the graph cursors to select the data of interest. Note that each data point on the preview graph corresponds to 16 readings. Each reading is identified by its memory location (unique ascending index within the logging memory). The Memory Location slider is a graphic representation of selected readings within the logging memory. You may use the Min and Max controls to select data by memory location or make a finer selection than with graph cursors.

Figure 94: UT-ONE Log Viewer data selection page

After you select the data of interest, choose the data to be viewed. The default setting is Readings, which loads all temperature readings from selected memory locations. Other options include average of 16 or 256 readings, minimum and maximum of 16 or 256 readings and raw data. Averaged and minmax data is especially useful if there are too many readings, as this option significantly reduces the data to be downloaded from the UT-ONE.

Click the Load Selected Data button to start loading data. The tab control will automatically switch to Data Viewing page. The Memory Location slider will change to progress indicator, so you can observe the download progress. Use the Stop Streaming button to stop download before it is completed.

Figure 95: UT-ONE Log Viewer data viewing page
Loaded data is presented in the graph and in the list. You may use the graph cursors to select data on graph. Alternatively, you may use the shift and control keys to click and select ranges or individual readings in the list. Both modes of selection are related and result in a common block of readings.
UT-ONE supports the deletion of individual readings, which is especially useful for removal of readings that were erroneous or out of range. Note that the deleted reading is actually not deleted and memory location is not freed, it is just marked as deleted and therefore ignored by software. Also, deleted readings can still be reviewed and even restored, so data integrity is not jeopardized.
You may right-click on the readings graph or list to display the popup menu with the following menu items:

- Copy Selected Data to Clipboard copies the readings, selected with graph cursors, to the Windows clipboard using a tab-separated ASCII format, which can be pasted in a text editor or MS Excel.
- Copy All Data to Clipboard copies all readings to the Windows clipboard using a tab-separated ASCII format, which can be pasted in a text editor or MS Excel.
- Export Selected Data to File writes the readings, selected with graph cursors, to a specified file using a tab-separated ASCII format.
- Export All Data to File writes the all readings to a specified file using a tab-separated ASCII format.
- Delete Selected Readings marks selected readings as deleted and removes them from graph and list. This command is available only by selection in list control.
- Undelete Selected Readings restores the selected readings that were previously marked as deleted. This command is available only by selection in list control. To be able to view and select deleted readings, you must first choose to enable the display of deleted readings.
- Display Deleted Readings enables the option to display the readings that were previously marked as deleted. This option is useful if you would like to undelete some readings or check if the deletion was valid.
- Show Selection moves the current position in the list control to first selected readings. This command is useful if you select the readings using the graph cursors and you would like to review the selection in the list control.
- Bring Cursor to Center moves the graph cursor in to graph area that is currently displayed. This command is useful if you zoom-in to particular data and graph cursors are no longer visible.
- Zoom Graph to Cursors changes the graph scale settings so that the graph cursors are positions at 10% and 90% of the scale. Note that this operation does not change the selection of readings.

8.6.2 Logging to internal Flash Memory

Internal Flash Memory consists of 2097152 memory locations. Each memory location can store one reading. Readings can be acquired from main channels in single-reading or continuous-measurement mode, or from ambient probes (RH, TA, TD and TJ channels). Each stored reading consists of the timestamp, raw value (resistance, emf or uncorrected temperature/relative humidity), corrected value (temperature or relative humidity), channel name, measurement range and connection configuration, and probe index. A CRC8 byte is appended to each reading data to insure data integrity.

Figure 96: UT-ONE Flash Memory Viewer
Start loading data from the flash memory by clicking the green Load A/l Data button. Application will clear any existing data and start displaying the preview of the TJ channel data on the graph. When required data is loaded, click the red Stop Streaming button. Alternatively, you may load the entire content of the flash memory to the application memory. This takes six to seven minutes. After the data is loaded, it is displayed on the graph and in reading/channel view.
Readings can be stored to binary file using the popup menu command. You can later load and review the data from the file. Note that this is full data in the same format as stored in Flash Memory.
Readings can be exported to clipboard in various formats using popup menu commands. You can paste this data into other applications, such as MS Excel. Note that for large number of readings, copying of data can take a lot of time.

Figure 97: UT-ONE Flash Memory Settings
Write status and settings of the internal flash memory can be configured in the Settings tab.
Writing in flash memory can be temporarily enabled or disabled using the popup menu command on the FM Write Status indicator. Note that this is a temporary setting and will be lost after the device is switched off.
The setting of writing to flash memory at startup can be enabled or disabled using the popup menu on the FM Startup Status indicator. This enables you to configure the device for operation in standalone mode with enabled writing to flash memory at startup.
Total and used flash memory is displayed in four indicators on the right hand side. Note that after memory is full, the device will automatically overwrite the oldest readings.
The content of the flash memory can be erased by clicking the Erase Flash Memory button. This will erase all readings and it cannot be undone. To confirm this operation, the application will require you to confirm the operation with a password. Password for erasing entire flash memory is:

8.7 UT-ONE Temperature Monitoring

UT-ONE Temperature Validation is a simple application that is capable of acquiring temperature from up to 12 probes connected to UT-ONE main channels. This application has a very straightforward configuration, so if you need an application with more complex configuration ability, you may consider also the UT-ONE Climatic Chamber Validation application.

Figure 98: UT-ONE temperature monitoring
This application acquires temperature on UT-ONE main channels. Probes are automatically assigned to channels in ascending order from 1 to the number of available main channels (for example probe 01 is used for channel C 1 , probe 02 for channel C 2 , etc). Application will use probe data stored in internal UT-ONE memory to calculate the temperature from acquired raw data, so make sure that connected thermometer probes match the probe data in the Probes list and make sure that probe data is valid.
The application will perform acquisition in single-reading mode. Measurement range will be set automatically to autorange, which is default for the selected probe (for example range RA for Pt-100 probes, range EA for thermocouple and range HA for thermistors). Acquisition rate will be set to affixed value of 2 seconds.

Note that you don't have to provide probe data or connect actual probes for all available main channels. Unused channels can be removed from the acquisition sequence by double-clicking the checkbox in the channel list. If the checkbox is unchecked, the channel will be skipped in the acquisition sequence.
To add or change a description of the particular channel, double-click the channel Description column in the channel list. This will open a dialog box, which allows you to edit the channel description. It is recommended that you set all descriptions before you start the measurement, otherwise the descriptions stored in the measurement file may not be correct.
This application can store acquired temperatures in the measurement file. Data is stored in the tabseparated text format, which allows you to review data in a text editor such as Notepad or directly import it in the MS Excel. When you start the application you are immediately prompted to provide the path and name for the measurement file. By default, the application will use the UT-ONE root path for the current year and a default name, but you can manually change it. If you cancel the measurement file selection, data will not be saved to file and Measurement File path indicator will be painted in red. You can select the file path later using the command in the popup menu. Commands in the popup menu also allow you to open the file in the default text editor and to explore the file location. Note that after you start the acquisition and the measurement file is generated, you are no longer able to change its name or location.
If you select the existing measurement file, you can choose to load the data that was previously stored in the measurement file and review it on the graph. You may also choose to continue with the acquisition
and the data will be stored in the same file. In this case, you must assure that the current probe configuration is the same as used during the acquisition of the original measurements, otherwise a data inconsistency will occur.

Figure 99: UT-ONE probe and measurement file configuration
You may use the Probes page to review the probe data. Use the Edit Probe button to open the Edit Probe dialog box to change the probe data or manage the backup copy of the probe data in a *.prb file. Note that changes that you make to probe data are permanently stored in the non-volatile memory of the UT-ONE device.
The acquisition is started by clicking the green Start button. After the acquisition is started, the green Start button changes to red Stop button. Acquisition can be stopped by clicking the red Stop button or by closing the application.
Measurement results can be observed on the graph, in the channel list and in two statistics indicators. Graph features two cursors, which can be used to select a portion of the measured data.
Right click on the graph area to display the popup menu with the following menu items:

- Clear Selected Readings removes the readings, selected with graph cursor, from the graph. Note that this operation can't be undone, but a copy of acquired data is saved in the autosaved file.
- Clear All Readings removes all readings from the graph
- Copy Selected Readings to Clipboard copies the readings, selected with graph cursors, to the Windows clipboard using a tab-separated ASCII format, which can be pasted in a text editor or MS Excel. The exported data includes also probe captions and channel descriptions.
- Copy Statistics to Clipboard copies the statistic information about selected readings to the Windows clipboard using a tab-separated ASCII format, which can be pasted in a text editor or MS Excel. The exported data includes also probe captions and channel descriptions. Statistics include average value, standard deviation, minimum value and maximum value.
- Zoom Graph to Cursors will change the graph X scale, so that graph cursors and selected data are visible in the graph. Note that the location of cursors and consequently selected data are not changed by this operation.
- Move Cursors to Graph Center will move the graph cursors and consequently the selected data to the middle of the currently visible portion of the X scale. Graph scaling is not changed by this operation.

8.8 UT-ONE Climatic Chamber Validation

UT-ONE Climatic Chamber Validation is a specialised application, which is used for the measurement of relative humidity and temperature distributions in a climatic chamber. This application is highly configurable and allows you to perform the validation in a wide variety of different ways.

8.8.1 Theoretical background

The operating principle of this application is based on the generally-accepted fact that although the temperature and relative humidity inside a climatic chamber may vary, the water vapour pressure (and also dew point) can be assumed to be constant over the entire volume of the climatic chamber. This assumption is valid if the following conditions are fulfilled:

- useful volume of the climatic chamber is not to large. For volumes larger than approximately $2 \mathrm{~m}^{3}$, you should consider measuring water vapour pressure in more than one point
- there is sufficient mixing of air in the useful volume of the climatic chamber
- there are no sources or sinks of water vapour in the useful volume of the climatic chamber
- there are no leaks that would lead to air being exchanged with the environment

As the vapour pressure is assumed to be constant over the entire useful volume of the climatic chamber, it is sufficient to measure it in a single location and just copy the measured value to all other measurement points. Note that dew-point temperature is directly related to vapour pressure and can be calculated using the Sonntag equation.
Temperature, relative humidity and vapour pressure at a given measurement point are also related with each other and if two of them are known, the third one can be calculated. For example, if relative humidity and temperature are known, vapour pressure (and dew point) can be calculated. Also, if vapour pressure and temperature are known, relative humidity can be calculated. Also, if you measure dew point using a mirror hygrometer, vapour pressure can be directly calculated.
Some of the calculations depend also on the air barometric pressure, most notably if psychrometers are used to measure relative humidity. The software allows you to enter the barometric pressure measured by the external barometer, however if the relative humidity is measured with a capacitive sensor or a mirror hygrometer, using normal barometric pressure will typically introduce a negligible error.
Note that all water vapour pressure values includes enhancement factor for air at specified barometric pressure.

8.8.2 Measurement procedure

In accordance with the presented theoretical background, the following measurement procedure can be outlined. Please note that this procedure is automatically executed by software and is completely transparent to the user.

1. Temperature is acquired sequentially in all measurement points. This is applicable also to relative humidity probes, mirror hygrometers and psychrometers, which all feature also an associated temperature probe.
2. Relative humidity is acquired from the relative humidity probes and optionally from the mirror hygrometers.
3. Vapour pressure is acquired or calculated from the mirror hygrometers, relative humidity probes and psychrometers.

- For the mirror hygrometers, vapour pressure is normally calculated from the directly measured dew-point temperature, but it can be also acquired directly from the mirror hygrometer or calculated from the acquired temperature and relative humidity.
- For the relative humidity probes, vapour pressure is calculated from the acquired temperature and relative humidity
- For the psychrometers, vapour pressure is calculated using the psychrometric equation from the acquire temperature of the wet and dry thermometer and specified barometric pressure.

4. Vapour pressure is copied from the reference measurement point for all remaining measurement points. The value of vapour pressure at the reference measurement point was determined in step 3.
5. Dew point is calculated directly from the vapour pressure using the Sonntag equation. For temperatures below $0{ }^{\circ} \mathrm{C}$, saturation over ice and not over super-cooled water is assumed in the calculation.
6. Relative humidity is calculated in the measurement points that were not processed in step 2 . Relative humidity is calculated from the acquired temperature and acquired or copied vapour pressure.
This measurement procedure allows you to determine temperature, relative humidity, vapour pressure and dew point in all measurement points.

8.8.3 Configuration

UT-ONE Climatic Chamber Validation application was designed with the goal of being extremely flexible and configurable and it allows many different combinations of hygrometers and thermometers. Temperature can be acquired from one or more UT-ONE units, as well as an external mirror hygrometer and combined probes. Relative humidity and related vapour pressure can be determined from the external mirror hygrometer, combined probe (a capacitive relative humidity probe) or from psychrometer (wet and dry probe temperature is acquired by UT-ONE).
The configuration can be reviewed and changed on the Configuration page. Setting up the configuration for your particular measurement system takes some time and effort, so the most common configurations are usually configured only once and then stored in the configuration file, where they can be later retrieved. For your convenience, the application also automatically stores the last used configuration, which is automatically loaded at application startup.
Note that once you start the measurement, configuration is locked and can't be changed any more, except for the Description, which can be changed if the measurement is stopped.

Figure 100: Configuration page
Setting up the configuration normally starts from an empty configuration list. If there are some entries in the configuration list, you can clear them using the Clear Configuration command from the popup menu.
New measurement point can be added by double-clicking an empty row in the configuration list or by selecting the Add Measurement Point command from the popup menu. The new measurement point is
always added at the end of the list and its position can't be changed later. New measurement point is added in the Add New Measurement Point dialog. Entries that are either missing or conflicting are painted in red. If you try to add a measurement point with some red entries, you will be warned before proceeding, but you can add the point anyway and correct it later before you start the measurement.

Figure 101: Dialog for adding a new measurement point
The dialog for the configuration of a measurement point has the following entries:

- Name is the unique label that is used to identify the measurement point. Name is used to identify the measurement point in graphs and lists and to reference the measurement point from other measurement points.
- Interface is the communication interface that used to communicate with the measurement instrument. Use the right-click to display a popup menu with a list of detected interface and select the correct entry. Note that some of the options for configuring the UT-ONE will only be available if UT-ONE is connected, switched on and the interface is not locked by another software package.
- t90 Source determines how the temperature is acquired for this measurement point using the specified communication interface. There are eight options available:
- UT-ONE Main Channe/ will acquire the temperature from the UT-ONE over specified communication interface and with given channel configuration. Use right-click to select one of the available channels and probes from the popup menu. Range is selected automatically after you select the probe, but you can change it manually later. Acquisition rate is 2 seconds by default, but you can change from 1 to 5 seconds. Connection configuration allows you to configure the channel for 3-wire or 2-wire connection or thermocouple acquisition on the auxiliary input. Use Default for 4-wire resistance measurement or thermocouple measurement on voltage inputs.
- UT-ONE Ambient Probe will acquire temperature from the ambient probe connected to UT-ONE with specified interface. No further configuration is required.
- External Hygrometer will acquire temperature from the temperature probe of the MBW 473 mirror hygrometer connected to specified interface. No further configuration is required.
- External Combined Probe 1 will acquire temperature from the Rotronic HC2 probe connected to specified serial interface.
- External Combined Probe 2 will acquire temperature from the Rotronic HCD probe connected to specified serial interface.
- Extrernal Chamber (SetPoint) will acquire SetPoint temperature from the Kambič Metrology climatic chamber connected to specified serial interface. Note you must configure one measurement point with this option in order to enable chamber control feature.
- External Chamber (Value) will acquire current temperature from the Kambič Metrology climatic chamber connected to specified serial interface.
- Not Used will not acquire any temperatures. Use this option if you would like to acquire only relative humidity.
- \quad RH Source determines how the relative humidity is acquired or calculated. There are nine options available:
- Calculate from e and t90 will calculate the relative humidity from acquired temperature and acquired or copied vapour pressure at this measurement point.
- UT-ONE Ambient Probe will acquire relative humidity from the ambient probe connected to UT-ONE with specified interface.
- External Hygrometer will acquire relative humidity from the MBW 473 mirror hygrometer connected to specified interface. Use this option if mirror hygrometer was calibrated to relative humidity and not to dew point. Using this option should give the same result as using Calculate from e and t90, if vapour pressure was acquired from hygrometer.
- External Combined Probe 1 will acquire relative humidity from the Rotronic HC 2 probe connected to specified serial interface.
- External Combined Probe 2 will acquire relative humidity from the Rotronic HCD probe connected to specified serial interface.
- Extrernal Chamber (SetPoint) will acquire SetPoint relative humidity from the Kambič Metrology climatic chamber connected to specified serial interface. Note that you must configure one measurement point with this option in order to enable setting RH setpoints with the chamber control feature.
- External Chamber (Value) will acquire current relative humidity from the Kambič Metrology climatic chamber connected to specified serial interface.
- Psychrometer will calculate relative humidity from the temperatures of wet and dry thermometer using the psychrometric equation. If you select this option, make sure you also select Psychrometer option for the vapour pressure source.
- Not Used will not acquire or calculate relative humidity. Use this option if you would like to acquire only temperature.
- e and td source determines how water vapour pressure and associated dew-point temperature are acquired or calculated. There are five options available:
- Calculate from RH and $t 90$ will calculate the water vapour pressure and dew-point temperature from acquired temperature and acquired relative humidity at this measurement point. Use this option if relative humidity was acquired using the UTONE ambient probe.
- Copy from Reference Measurement Point will copy the vapour pressure and dew-point temperature from the measurement point that you specify in the Reference e and td box. You can select the name of the reference measurement point from the popup menu.
- External Hygrometer will acquire dew-point temperature from the MBW 473 mirror hygrometer connected to specified interface. Vapour pressure will be calculated from the acquired dew point temperature using the Sonntag equation.
- Psychrometer will calculate water vapour from the temperatures of wet and dry thermometer using the psychrometric equation. If you select this option, make sure you also select Psychrometer option for the relative humidity source. Temperature measured at this measurement point will be used for wet-bulb temperature. You must specified the measurement point where dry-bulb temperature was measured in the Dry Bulb control (you may use the popup menu to display a list of available names). Specify the value of the psychrometric constant $\left(A=A 0+A 1{ }^{*} t_{w}\right)$ or use the popup menu to select one of the commonly used values.
- Not Used will not acquire or calculate vapour pressure and dew-point temperature. Use this option if you would like to acquire only temperature.
- Description is a longer text that usually describes the position or function of the measurement point. Description is often changed after the configuration is loaded from the configuration file to describe the particular measurement case. Description has no effect on measurement procedure, but it is stored in the measurement header in the measurement file and can be used to identify measurements.

Figure 102: Examples of measurement point configuration

Figure 103: More examples of measurement point configuration

Figure 104: More examples of measurement point configuration
Most commonly, the first measurement point is the source of the vapour pressure value and is used as reference measurement point in the following measurement points. If you enter a temperature-only measurement point before the source of vapour pressure, you will not be able to choose the reference measurement point for vapour pressure, so you will have to readjust it after you finally enter the
reference measurement point. Note that the measurement procedure will be able to perform measurements regardless of the order of the measurement points.
The source of vapour pressure can be a relative humidity probe, mirror hygrometer or a psychrometer, as presented in the examples above. Note that you can measure vapour pressure at more than one point and that you can use any of them as a reference measurement point.
The rest of the measurement points acquire only temperature, while the relative humidity is calculated from the copied vapour pressure. Alternatively, you may also choose to ignore relative humidity, so only temperature is acquired and recorded.
If you would like to control the Kambič climatic chamber using the chamber control feature, you must configure one of the measurement points with the temperature source External Chamber (SetPoint) and specify the correct serial interface. This serial interface will be used to communicate with the chamber from the chamber control program. If you would like to set also the RH setpoint from the chamber control program, you must configure also the relative humidity source External Chamber (SetPoint). This is not required if you are using temperature-only chamber.
Some of the most common configurations are presented in figures below. Note that there are many more valid configurations with different combinations of sensors and acquisition parameters.

Figure 105: Configuration with external hygrometer and 12 thermometers

Configuration List						
	Name	Interface	Temperature Source	Relative Humidity Source	Vapour Pressure and Deewpoint Source	Description
1	RHProbe	UTONE E04040814	UT-ONE Ambient Probe	UT-ONE Ambient Probe	Calculate from RH and t90	UT-ONE Relative humidity probe
2	Point 1	UTONE S04060217	UT-ONE (C7, ELPRO (1) 463220118)	Calculate frome and t90	Copy e from "RH Probe"	Ceiling
3	Point 2	UTONE S04060217	UT-ONE (C8, ELPPO (8) 463290118)	Calculate frome end t90	Copy e from "RH Probe"	Left wall
4	Point 3	UTONE 504060217	UT-ONE (C9, ELPRO (9) 463300118)	Calculate frome end t90	Copy e from "RH Probe"	Right wall
5	Point 4	UTONE 504060217	UT-ONE (CCO, ELPRO (10) 463310118)	Calculate frome end t90	Copy e from "RH Probe"	Back wall
6	Point 5	UTONE 504060217	UT-ONE (C11, ELPRO (11) 463320118)	Calculate frome e and t90	Copy e from "RH Probe"	Front wall
7	Point 6	UTONE 504060217	UT-ONE (C12, ELPRO (12) 463330118)	Calculate frome e and t90	Copy e from "RH Probe"	Bottom

Figure 106: Configuration with UT-ONE Ambient Probe and 6 thermometers

Configuration List							
	Name	Interface	Temperature Source	Relative Humidity Source	Vapour Pressure and Dewpoint Source	Description	
1	Wet Bulb	UTONE S04060217	UT-ONE (CC, Elpro TH10 467190318)	Psychrometer	Psychrometer (Dry Bulb="Dry Bulb")	Psychrometer (Wet bulb)	
2	Dry Bulb	UTONE 504660217	UT-ONE (C2, Elpro TH10 467200318)	Calculate frome and t90	Copy efrom "Wet Bulb"	Psychrometer (Dry Bulb)	
3	Cormer 1	UTONE 504660217	UT-ONE (C4, ELPRO (4) 463250118)	Calculate frome e and t 90	Copy efrom "Wet Bulb"	TRF	
4	Corner 2	UTONE S04060217	UT-ONE (CS, ELPRO (5) 463260118)	Calculate frome end t90	Copy efrom "Wet Bulb"	TRB	
5	Corner 3	UTONE 504060217	UT-ONE (C6, ELPRO (6) 463270118)	Calculate frome e and t90	Copy efrom "Wet Bulb"	TLB	
6	Cormer 4	UTONE 504060217	UT-ONE (C7, ELPRO (7) 463280118)	Calculate frome end t90	Copy e from "Wet Bulb"	TLF	
7	Cormer 5	UTONE S04060217	UT-ONE (C8, ELPRO (8) 463290118)	Calculate frome e and t90	Copy efrom "Wet Bulb"	BRF	
8	Corner 6	UTONE S04060217	UT-ONE (C9, ELPRO (9) 463300118)	Calculate frome e and t90	Copy efrom "Wet Bulb"	BRB	
9	Corner 7	UTONE S04060217	UT-ONE (CC10, ELPRO (10) 463310118)	Calculate frome e and t90	Copy e from "Wet Bulb"	BLB	
10	Cormer 8	UTONE S04060217	UT-ONE (C11, ELPRO (11) 463320118)	Calculate frome and t90	Copy efrom "Wet Bulb"	BLF	
11	Center	UTONE S04060217	UT-ONE (C3, ELPRO (3) 463240118)	Calculate frome e and 90	Copy efrom "Wet Bulb"	Center	

Figure 107: Configuration with psychrometer and 9 thermometers

Figure 108: Configuration with 9 thermometers and no relative humidity

Configuration List						
	Name	Interface	Temperature Source	Relative Humidity Source	Vapour Pressure and Dewpoint Source	Description
1	MBW 473	Com	External Hygrometer	Calculate frome eand t90	External Hygrometer	Mirror hygrometer
2	Ambient Probe	UTONE E04040814	UT-ONE Ambient Probe	UT-ONE Ambient Probe	Calculate from RH and t90	UT-ONE Ambient probe on 3-ch UT-ONE
3	Wet Bulb	UTONE E04040814	UT-ONE (C2, Elpro TH10 467190318)	Psychrometer	Psychrometer (Dy Bulb="Dry Bulb")	Psychrometer wet bulb
4	Dry Bulb	UTONE B04040814	UT-ONE (3 , Elpro TH10 467200318)	Calculate frome e and t90	Copy efrom "Wet Bulb"	Psychrometer dy bulb
5	Corner 1	UTONE 504060217	UT-ONE (C1, ELPRO (1) 463220118)	Calculate frome and t90	Copy efrom "MBW 473"	Top left back comer
6	Corner 2	UTONE S04060217	UT-ONE (C2, ELPRO (2) 463230118)	Calculate frome e and t90	Copy efrom "MBW 473"	Top left front comer
7	Corner 3	UTONE 504060217	UT-ONE (C3, ELPRO (3) 463240118)	Calculate frome eand t90	Copy efrom "MBW 473"	Top right front comer
8	Corner 4	UTONE 504060217	UT-ONE (C4, ELPRO (4) 463250118)	Calculate frome eand t90	Copy efrom "MBW 473"	Top right back corner
9	Center	UTONE 504060217	UT-ONE (C5, ELPRO (5) 463260118)	Calculate frome eand t90	Copy efrom "Ambient Probe"	Center
10	Corner 5	UTONE S04060217	UT-ONE (C6, ELPRO (6) 463270118)	Calculate frome and t90	Copy efrom "Wet Bulb"	Bottom left back corner
11	Corner 6	UTONE S04060217	UT-ONE (C7, ELPRO (7) 463280118)	Calculate frome eand 90	Copy efrom "Wet Bulb"	Bottom left front corner
12	Cormer 7	UTONE S04060217	UT-ONE (C8, ELPRO (8) 463290118)	Calculate frome eand t90	Copy e from "Wet Bulb"	Bottom right front comer
13	Comer 8	UTONE S04060217	UT-ONE (C9, ELPRO (9) 463300118)	Calculate frome and t90	Copy efrom "Wet Bulb"	Bottom right back comer
14	Aux 1	UTONE 504060217	UT-ONE (C10, ELPRO (10) 463310118)	NOT USED	NOT USED	Outside temperature

Figure 109: Configuration with three different vapour-pressure sources, two UT-ONE units and 10 thermometers

Figure 110: Configuration with Kambic climatic chamber and one thermometer probe

8.8.4 Measurement file

This application can store the results of measurements in a tab-separated text file, which can be opened in a text editor (such as Notepad) or imported to MS Excel or similar software package for further analysis and report generation.
When you start the application, you are immediately prompted to enter the measurement file path and name. You can change the default path and location. By default, measurement files are stored in a specified root path in a current year directory. Default file name consist of CCV prefix and date stamp. The first time you start this application you will be prompted to select the root path where measurement files will be stored by default. You can change the root path later by editing the "UT-ONE Settings.ini" file in the application directory.
If you select an existing file, you will be prompted to load the existing measurements and configuration from the file. New measurements will be appended to this file.
If you cancel the measurement file selection, the measurements will not be saved to the measurement file and the Measurement File control will be painted in red. You can use the popup menu to select the file later, but any previously made measurements will be lost.
Measurement file stores both the configuration and measurement data. Note that configuration files are basically measurement files with no measurement data. It is therefore possible to load the configuration in the configuration list from an existing measurement file.
Measurement file is created when you start the measurement for the first time. After the file is created, you can't change its name or path any more.
Use the popup menu on the Measurement File control to open the measurement file in the default text editor or explore its location in Windows Explorer.
Measurements can be reload from existing measurement files by selecting the file during the application startup. This allows you to perform data analysis, calculate statistics and export readings after you completed the measurements.

8.8.5 Measurement

After you load or configure measurement configuration and optionally select the measurement file, you can proceed with measurements. Note that measurements are performed automatically and the measurement procedure is completely transparent to the user.

Figure 111: Measurement page with temperature display selected
To start the measurement, select the Measurement page and click the green Start button. The application will immediately start the acquisition and display the results in the measurement list. After all measurement points are acquired, the measurement is appended to the graph and optionally saved to the measurement file.
If you can't start the measurement because the green Start button is disabled, check that the configuration list was configured and all entries are valid. Invalid entries will be painted in red.
To stop the measurement, click the red Stop button. The acquisition will stop immediately and the last acquired readings will be discarded.

Figure 112: Measurement page with relative humidity display selected and auxiliary points excluded

8.8.6 Data analysis

Analysis of the measurement data can be performed during the acquisition or after the acquisition is completed, possibly even by reloading the measurement data from the measurement file.
The results for the current reading are displayed in the measurement list on the Last Reading page. Measurement list includes readings for all four acquired quantities. The readings are painted in grey scale according to their value. Some measurement points can be excluded from the graph and statistical analysis by unchecking the graph in the graph legend or by double clicking the measurement point in the measurement list. Note that the excluded measurement point will be normally acquired and stored, it will just not be displayed on graph and included in statistics.

Figure 113: Last Reading page with "RH probe" excluded
The graph and statistics can display values only for one quantity, so use the blue display selector to select between temperature, relative humidity, vapour pressure and dew point. Note that although only one quantity is displayed, all quantities are acquired and stored according to the selected configuration.
The graph has two cursors, which allow you to select a range of measurements that are used in the analysis and for exporting the data. You can review selected readings in the Selected Readings page. Use the popup menu on the readings list to copy the readings to clipboard. This allows you to paste the readings directly to MS Excel and simply create graphs and reports.

Figure 114: Selected Readings page
The statistics for the selected readings, selected measurement points and selected display quantity is displayed in the Selected Statistics page. Note that excluded measurement points are not displayed in the statistics list at all. This allows you to eliminate some additional measurements points that are not supposed to be part of the climatic chamber validation (for example measurement at the fan inlet) or some auxiliary measurements, such as the temperature of the psychrometer wet bulb, which is not a temperature related to the performance of the climatic chamber. Use the popup menu to copy the selected statistics to the clipboard.

Figure 115: Selected Statistics page

Use the popup menu on the graph to execute these menu commands:

- Clear All Readings will clear all acquired readings from graph and memory, but they will remain stored in the measurement file (if measurement file was selected). Use this command before you start a new set of measurements and the existing readings would interfere with graph autoscaling.
- Clear Selected Readings will clear readings that are selected between graph cursors. Readings will be removed from graph and memory, but they will remain stored in the measurement file (if measurement file was selected). Use this commands if there are just a few readings that are either erroneous or out of scale.
- Zoom Graph to Cursors will change graph X scale so that the graph cursors are clearly visible in the middle of the graph area. Cursor position and consequently selected data will not be changed. Use this command if you would like to review the selected readings or if you would like to make a fine adjustment of the selected readings range.
- Move Cursors to Graph Center will move the cursors and consequently the selected data to the center of the graph area. Graph scaling is not changed by this operation. Use this command if you have zoomed in the graph and cursors are no longer visible in the currently visible graph area.
- Graph Legend allows you to select the label that is used to identify plots in the graph legend. You can choose between measurement point name, description and index.
- Export ALL Readings to File will create a new measurement file with the name and path that you specify and save all available readings to file. If any of the readings were previously cleared, they will not be exported. Note that this file is independent of the measurement file, which is used to save readings during measurement. This operation can take several minutes if there are a lot of readings. Graph cursors are used to indicate export progress. This command is only available when the measurement is stopped.
- Export SELECTED Readings to File is similar to the previous command, but instead of exporting all readings, it exports only readings that were selected with graph cursors.
- Restore Readings from Current File will reload all readings that were previously saved in the currently selected measurement file. Note that this command will overwrite any readings that may be currently displayed on the graph, so make sure that all required readings were actually stored in the measurement file. This command is useful if you have (accidentally) cleared some readings and you would like to restore them back. This command is only available when the measurement is stopped.
Readings can be reviewed in graphical format on the main graph. Main graph offers many features that are inherent to LabVIEW graphs, such as zooming, scaling and autoscaling the graph axes, changing graph colours and plot appearance, etc. Most of these features are accessible in the graph legend, axis legend and tools pallete on the right-hand side of the main graph. If you are not faimiliar with LabVIEW and LabVIEW graph features, you may consider learning more about LabVIEW graphs in LabVIEW support at www.ni.com.

8.8.7 Chamber control

Chamber Control feature enables the user to synchronize the chamber setpoints and temperature/relative humidity acquisition from a single application. This feature enables simple manual setting of temperature and relative humidity setpoints, as well as a more complex chamber program, which enables setting several setpoints with adjustable time intervals.
This feature currently support Kambič metrology climatic chambers with serial communication interface. Other chamber types may be included by integrating a suitable communication driver.
To enable chamber control feature, you must first configure one measurement point with the temperature source set to External Chamber. Make sure you select the correct serial communication interface. Climatic chamber must have the serial interface baud rate set to 19200 bauds.

Figure 116: Chamber Control page
Chamber program consists of a set of program steps. A program step can be added by double-clicking an empty row. Alternatively, steps can be managed using commands from the popup menu.
Each program step consists of the operation and parameter, which can be edited in the Program Step dialog. The following operations are available:

- Set Temperature will send a new temperature setpoint to the chamber. Application will read the setpoint back from the chamber and compare it to the new setting. If there is a difference, a warning is displayed in the step status. Make sure that setpoints are within the temperature range of the particular climatic chamber, otherwise unexpected behaviour may occur.
- Set Ramp will send a new temperature ramp to the chamber. Application will read the ramp back from the chamber and compare it to the new setting. If there is a difference, a warning is displayed in the step status.
- Set Relative Humidity will send a new relative humidity setpoint to the chamber. Application will read the setpoint back from the chamber and compare it to the new setting. If there is a difference, a warning is displayed in the step status. Make sure that setpoints are within the relative humidity range of the particular climatic chamber, otherwise unexpected behaviour may occur. Note that relative humidity limits may vary with temperature setpoint for a specific chamber type.
- Wait Interval will wait for a specified fixed time interval, for example 30 minutes. After the time expires, the program will continue execution with the next step. If configured, the acquisition of measurement points will proceed normally during waiting period.
- Wait TimeStamp will wait until the specified absolute time. This command is especially useful for tests with a delayed start. For example, you may configure the application to start the program at midnight, so the chamber is already stable and ready for work in the morning.
- Wait SetPoint or Timeout will continuously monitor the chamber temperature setpoint and value, until they are the same for a period of 10 minutes. This gives a rough indication of a stable state. The application will allow some scatter in the temperature values by checking the median of readings and not the mean value. As a safeguard, you can set the timeout interval, which will allow the program to proceed to next program step after the timeout has elapsed. This is useful in cases when the stability criteria of the chamber is not met.
- Start Chamber will instruct chamber to start chamber operation.

3-Channel Thermometer Readout

- Stop Chamber will instruct chamber to stop chamber operation.
- Start Acquisition will start the main acquisition of configured measurement points. This is equivalent to clicking the green Start button on the Measurement page. This operation allows you to delay the start of acquisition and you can avoid storing irrelevant data (for example before the chamber is stable).
- Stop Acquisition will stop the main acquisition of configured measurement points. This is equivalent to clicking the red Stop button on the Measurement page.
Program is started by clicking the green Start Program button. Alternatively, you can use the command from the popup menu, which allows you also to start the program at any program step.
Program can be saved or loaded from the program file using the popup menu command. Also, after you start the program, the application will create an autosave copy of the program, which will be automatically loaded at next application start.
After the program is started, you can observe the status of the current and previous steps. In case of detected issues, the application will display a warning or error status.
Program steps can be skipped or paused using the command from the popup menu. You can also select any program step and use the popup menu command to continue program execution at selected step.
Note that chamber program execution is essentially independent of measurement acquisition. This allows you to start the program with or without measurement acquisition and start/stop measurement acquisition during program execution.

8.9 UT-ONE Parallel Acquisition

UT-ONE Parallel Acquisition is a specialised application that allows fast parallel acquisition from multiple UT-ONE units. It was primarily designed for use with UT-ONE S01A 1-channel units, but it can work normally with any UT-ONE thermometer readout.
This application is applicable for procedures where multiple temperature probes must be acquired at the same time and with a very short sampling time, so consecutive acquisition on a multi-channel device is not fast enough. This application allows acquisition rates of up to 2 samples per second on all probes.
Acquired readings are presented on the graph and stored in a measurement file.
The number of UT-ONE devices that can be acquired by this application is limited only with operating system resources. Note that USB standard allows the connection of up to 127 devices and some of them are already used by other computer peripherals. Available computer memory and processing power can also limit the total number of devices. The system was tested with 10 UT-ONE devices and performed flawlessly. A system with up to 30 devices should be able to work, but it would require some additional testing and optimization.

Figure 117: Parallel Acquisition application

Figure 118: Settings page for Parallel Acquisition
To configure your parallel acquisition system, you must firs add UT-ONE devices in the UT-ONE device list using the command from the popup menu. The system will autodetect all connected UT-ONE devices and display their USB addresses in a submenu. Note that you can only select a particular UT-ONE device once and use for acquisition on one main channel.
The acquisition settings are common for all UT-ONE devices. You can select channel (typically C1), measurement range (typically autorange RA for Pt-100 probes) and Probe Index used for conversion of acquired raw value to temperature. If you are using user-defined probe coefficients, make sure you store them under the same probe index on all UT-ONE devices.
Sampling rate is primarily determined by the ADC Samples parameter, which determines how many ADC samples are acquired and averaged to produce one temperature reading. You can between 1 and 40 samples. Recommended value is 6 samples, which will result in 1 temperature reading per second.

Sampling period parameter allows you to synchronize readings with computer clock. Make sure sampling time is larger than acquisition time, otherwise the acquisition rate will be determined by $A D C$ Samples parameter and readings will be acquired asynchronously at maximum possible acquisition rate.

8.10 UT-ONE Firmware Upgrade

UT-ONE Firmware Upgrade is a support application used to upgrade the UT-ONE firmware. At Batemika we are constantly improving our products and this application allows you to update your existing unit with new features.
UT-ONE firmware upgrade is applicable to all models of the UT-ONE family of thermometer readouts.
On some models, firmware upgrade can only be performed using the RS232 serial interface. Always use the communication cable supplied with the UT-ONE unit. Always use 38400 baud rate setting, other baud rates are not supported by the upgrade application. If your UT-ONE unit is configured for another baud rate, change it to 38400 bauds first and then proceed with upgrade. Note that full upgrade takes about two hours at maximum baud rate for units with built-in display.
On models with no RS232 interface, upgrade must be performed using USB interface. This includes models with GPIB+RS232 interface option.

Figure 119: UT-ONE Firmware Upgrade
Start the upgrade procedure by closing all other applications that are communicating with UT-ONE. To avoid confusion, connect only one UT-ONE unit at a time during the upgrade.
Select the VISA resource name for your particular UT-ONE and communication interface. If UT-ONE is successfully detected on selected VISA resource name, the colour of the input box will change from red to white and the Connect button will be enabled.
Click the Connect button to proceed to Normal Mode or Upgrade Mode screen. Note that you can safely connect, the application will ask you later to confirm any changes to UT-ONE firmware.
If UT-ONE is running normally, application will connect to Normal Mode and display the UT-ONE information. Application also checks the firmware version in the device and compares it the version in the upgrade. If versions are identical, the box is coloured in green, otherwise in red. If you decide to proceed with the upgrade, click the Enter Upgrade Mode button. The application will set the upgrade flag in the UT-ONE and shut it down. You have to manually switch it back on. UT-ONE starts in the upgrade mode, displaying the message "Firmware is ready for update!". Click the Connect button to enter the Upgrade mode.
If you are using the USB interface, the VISA resource name of your UT-ONE device will change to "USBO::0x03EB::0xC147::BOOT::RAW". Select this entry to proceed with upgrade.

3-Channel Thermometer Readout

After the applications connects to upgrade mode, it checks the cyclic redundancy check (CRC) of the firmware in the device and in the upgrade and displays it in the table. Note that firmware consists of the boot section and application section, each having a separate CRC. Firmware upgrade will only update the application section. If there is a mismatch in the boot section CRC, upgrade may not be possible.

Figure 120: UT-ONE Firmware Upgrade in normal mode
To start the upgrade, click the Upgrade Firmware button. Upgrade procedure consist of three steps. Do not interrupt the upgrade during the first and second step. In the first step main processor firmware is upgraded. In the second step, the display firmware is updated and in the third step display data is updated. This step can be safely aborted by clicking the Abort Upgrade button. This is particularly useful in case of minor upgrades or bug fixes, as display data consists mainly of images, which are rarely changed. UT-ONE models without the display will finalize the upgrade after the first step.
The full upgrade takes about 2 hours using RS232 interface and 30 minutes using the USB interface.

Figure 121: UT-ONE Firmware Upgrade during upgrade
After the upgraded is completed, click the Reconnect button to shut down the UT-ONE unit. After you manually restart the device, it will launch with the upgraded firmware.

9 Specifications

This chapter provides detailed specifications for UT-ONE B03B thermometer readout accuracy, operating conditions and other parameters.
Batemika is dedicated to constant improvement of our products and associated measurement procedures. We reserve the right to changes without prior notice.

9.1 General specifications

Value	
Number of main channels	3
Thermometer probes	platinum resistance thermometers, thermistors, thermocouples
Temperature range	$-273.15{ }^{\circ} \mathrm{C}$ to $2100^{\circ} \mathrm{C}$ max, limited by the probe range
Type of sampling	consecutive
Sampling period	1 to 240 seconds per enabled channel (continuous mode)
	0.5 to 5 seconds per reading (single-reading mode)
	up to 470 samples/second (digitizing mode)
Measurement current	$1 \mathrm{~mA} / 0.707 \mathrm{~mA}$ for PRTs, $10 \mu \mathrm{~A} / 7.07 \mu \mathrm{~A}$ for thermistors
Keep-warm current	automatically adjusted for all PRT and thermistor channels
Measurement current accuracy	$\pm 0.5 \%$
Keep-warm current accuracy	$\pm 2 \%$
Channel matching	PRTs: <0.5 ppm typical, $\pm 1 \mathrm{ppm}$ maximum
	Thermistors: <1 ppm typical, $\pm 3 \mathrm{ppm}$ maximum
	Thermocouples: $<0.2 \mu \mathrm{~V}$ typical, $\pm 0.4 \mu \mathrm{~V}$ maximum
Parasitic emf suppression	full current reversal (PRT and thermistor channels only)
Logging	67108864 readings (over 4 years at 2 s sampling period)
Communication interfaces	RS232 and USB
Display	3.2 " color LCD (320x240 pixels) with touch screen
Power supply	USB bus or external power supply
External power supply	$6 \mathrm{~V} \mathrm{DC} \pm 0.5 \mathrm{~V}, 0.5 \mathrm{~A}$ to 1.5 A
Battery capacity	3000 mAh (11.1 Wh) / 9 hours of operation typical
Battery lifetime	500 cycles typical, battery capacity degrades with use
Power consumption	1 W typical, 7 W maximum (when recharging battery)
Weight	2.4 kg
External dimensions (WxHxD)	$160 \times 140 \times 300 \mathrm{~mm}$
Warm up time	no warm up time required to achieve specified accuracy

9.2 Main channels

Accuracy specification is applicable to readout unit only and does not include the thermometer probe accuracy. Note that thermometer probe will practically determine the temperature range and in may be the dominant contributor in the complete measurement uncertainty.
Specifications for PRT and thermistor ranges are specified for normal measurement current setting (1 mA and $10 \mu \mathrm{~A}$). Using the reduced measurement current setting will result in deterioration of effective resolution for approximately 40%.
Effective resolution is given as the standard deviation of 1000 readings of stable input resistance or emf under optimal conditions. Effective resolution is specified for the 2 second acquisition rate. Increasing the acquisition rate will improve the effective resolution according to the square root rule (for example increasing the acquisition rate to 18 seconds will improve the effective resolution by a factor of 3). Effective resolution (expressed in $\mu \Omega$ or $\mu \mathrm{V}$) is constant over particular measurement range.
Specifications for thermocouple ranges do not include cold junction compensation error. If internal temperature probe is used for cold junction compensation, refer to its specification and add "CJC accuracy" value to the thermocouple measurement uncertainty. CJC accuracy includes both probe accuracy and error due to temperature gradients.
Short-term drift is defined as the maximum drift of the measured value within the 48 hours from last recalibration. Ambient temperature during this period must be within $\pm 3^{\circ} \mathrm{C}$ from the calibration ambient temperature.
Long-term drift is defined as the maximum drift of the measured value within 12 months from last recalibration. UT-ONE must be used during this period within specified operational environmental specifications.
Temperature coefficient is factory-adjusted for each measurement range. Accuracy specification provides residual temperature coefficient after the correction is applied internally by UT-ONE algorithms. Accuracy specification is valid after the instrument has reached stable temperature, as indicated by internal thermometers TJ and TI.
Parasitic emf is a small voltage caused by thermal gradients on input connections. In resistance measurement, parasitic emf is eliminated by reversing the polarity of measurement current, but for thermocouple measurements, thermal emf cannot be distinguished from thermocouple emf. Parasitic emf is independent of measurement range and measured value. Parasitic emf can be minimized by placing UT-ONE B03B in thermally stable environment and by thermally shielding input connectors.

9.2.1 Specifications for PRT subranges

Range name	Range limit	Effective resolution	Nonlinearity	Short-term drift	Long-term drift	Temperature coefficient
R1	25Ω	$27 \mu \Omega$	1 ppm of range	5 ppm of value	10 ppm of value	0.25 ppm/ ${ }^{\circ} \mathrm{C}$
R2	50Ω	$35 \mu \Omega$	1 ppm of range	5 ppm of value	10 ppm of value	0.25 ppm/ ${ }^{\circ} \mathrm{C}$
R3	100Ω	$70 \mu \Omega$	1 ppm of range	5 ppm of value	10 ppm of value	0.25 ppm $/{ }^{\circ} \mathrm{C}$
R4	200Ω	$120 \mu \Omega$	1 ppm of range	5 ppm of value	10 ppm of value	0.25 ppm $/{ }^{\circ} \mathrm{C}$
R5	400Ω	$200 \mu \Omega$	1 ppm of range	5 ppm of value	10 ppm of value	0.25 ppm $/{ }^{\circ} \mathrm{C}$
R6	800Ω	$500 \mu \Omega$	1 ppm of range	5 ppm of value	10 ppm of value	0.25 ppm $/{ }^{\circ} \mathrm{C}$

9.2.2 Specifications for thermistor subranges

Range name	Range limit	Effective resolution	Nonlinearity	Short-term drift	Long-term drift	Temperature coefficient
H1	$2.5 \mathrm{k} \Omega$	$3 \mathrm{~m} \Omega$	2 ppm of range	15 ppm of value	25 ppm of value	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
H2	$5 \mathrm{k} \Omega$	$4 \mathrm{~m} \Omega$	2 ppm of range	15 ppm of value	25 ppm of value	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
H3	$10 \mathrm{k} \Omega$	$8 \mathrm{~m} \Omega$	2 ppm of range	15 ppm of value	25 ppm of value	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
H4	$20 \mathrm{k} \Omega$	$14 \mathrm{~m} \Omega$	2 ppm of range	15 ppm of value	25 ppm of value	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
H5	$40 \mathrm{k} \Omega$	$20 \mathrm{~m} \Omega$	3 ppm of range	15 ppm of value	25 ppm of value	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
H6	$80 \mathrm{k} \Omega$	$60 \mathrm{~m} \Omega$	5 ppm of range	15 ppm of value	25 ppm of value	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

9.2.3 Specifications for thermocouple subranges

Range name	Range limit	Effective resolution	Nonlinearity	Short-term drift	Long-term drift	Temperature coefficient	Parasitic emf
E1	15 mV	$0.03 \mu \mathrm{~V}$	10 ppm of range	30 ppm of value	60 ppm of value	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.5 \mu \mathrm{~V}$
E2	30 mV	$0.04 \mu \mathrm{~V}$	10 ppm of range	30 ppm of value	60 ppm of value	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.5 \mu \mathrm{~V}$
E3	60 mV	$0.07 \mu \mathrm{~V}$	10 ppm of range	30 ppm of value	60 ppm of value	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.5 \mu \mathrm{~V}$
E4	125 mV	$0.11 \mu \mathrm{~V}$	10 ppm of range	30 ppm of value	60 ppm of value	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.5 \mu \mathrm{~V}$
E5	250 mV	$0.2 \mu \mathrm{~V}$	10 ppm of range	30 ppm of value	60 ppm of value	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.5 \mu \mathrm{~V}$
E6	500 mV	$0.5 \mu \mathrm{~V}$	20 ppm of range	50 ppm of value	100 ppm of value	$4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.5 \mu \mathrm{~V}$

9.2.4 Pt-100 specifications

This chapter presents UT-ONE accuracy specification applied to the industrial-grade platinum resistance thermometer with nominal resistance of 100 ohms. Presented accuracy specification is applicable to measurements with normal measurement current (1 mA) and with auto ranging feature enabled. Accuracy for measurements with external resistor depends on accuracy of external resistor, 2 ppm accuracy is used in this example.
Note that presented accuracy is the accuracy of measurement instrument only and does not include probe drift and accuracy!

Figure 122: UT-ONE accuracy specification for Pt-100 probe
As a convenience to the user, graphs of $\mathrm{Pt}-100$ probe resistance and sensitivity are presented. Note that this is a general property of this particular type of probes and is not originating from UT-ONE characteristics.

Figure 123: Resistance and sensitivity characteristic for Pt-100 probe

UT-ONE B03B

9.2.5 Pt-25 specifications

This chapter presents UT-ONE accuracy specification applied to the standard platinum resistance thermometer with nominal resistance of 25 ohms. Presented accuracy specification is applicable to measurements with normal measurement current (1 mA) and with auto ranging feature enabled. Accuracy for measurements with external resistor depends on accuracy of external resistor, 2 ppm accuracy is used in this example.
Note that presented accuracy is the accuracy of measurement instrument only and does not include probe drift and accuracy!

Figure 124: UT-ONE accuracy specification for Pt-25 probe
As a convenience to the user, graphs of Pt-25 probe resistance and sensitivity are presented. Note that this is a general property of this particular type of probes and is not originating from UT-ONE characteristics.

Figure 125: Resistance and sensitivity characteristic for Pt-25 probe

3-Channel Thermometer Readout

9.2.6 Thermistor 3K3A specifications

This chapter presents UT-ONE accuracy specification applied to the thermistor probe with nominal resistance of 3000 ohms. Presented accuracy specification is applicable to measurements with normal measurement current $(10 \mu \mathrm{~A})$ and with auto ranging feature enabled. Accuracy for measurements with external resistor depends on accuracy of external resistor, 3 ppm accuracy is used in this example.
Note that presented accuracy is the accuracy of measurement instrument only and does not include probe drift and accuracy!

Figure 126: UT-ONE accuracy specification for 3K3A thermistor probe
As a convenience to the user, graphs of 3K3A thermistor probe resistance and sensitivity are presented. Note that this is a general property of this particular type of probes and is not originating from UT-ONE characteristics.

Figure 127: Resistance and sensitivity characteristic for 3K3A thermistor probe

9.2.7 Thermistor 10K3A specifications

This chapter presents UT-ONE accuracy specification applied to the thermistor probe with nominal resistance of 10000 ohms. Presented accuracy specification is applicable to measurements with normal measurement current $(10 \mu \mathrm{~A})$ and with auto ranging feature enabled. Accuracy for measurements with external resistor depends on accuracy of external resistor, 3 ppm accuracy is used in this example.
Note that presented accuracy is the accuracy of measurement instrument only and does not include probe drift and accuracy!

Figure 128: UT-ONE accuracy specification for 10K3A thermistor probe
As a convenience to the user, graphs of 10K3A thermistor probe resistance and sensitivity are presented. Note that this is a general property of this particular type of probes and is not originating from UT-ONE characteristics.

Figure 129: Resistance and sensitivity characteristic for 10K3A thermistor probe

UT-ONE B03B

3-Channel Thermometer Readout

9.2.8 Thermocouple Type K specifications

This chapter presents UT-ONE accuracy specification applied to the thermocouple probe of type K. Presented accuracy specification is applicable to measurements with auto ranging feature enabled and use of external cold-junction compensation. For measurements with internal cold-junction compensation, add the specified cold-junction accuracy.
Note that presented accuracy is the accuracy of measurement instrument only and does not include probe drift and accuracy!

Figure 130: UT-ONE accuracy specification for type K thermocouple probe
As a convenience to the user, graphs of type K thermocouple probe emf and sensitivity are presented. Note that this is a general property of this particular type of probes and is not originating from UT-ONE characteristics.

Figure 131: Emf and sensitivity characteristic for type K thermocouple probe

9.2.9 Thermocouple Type S specifications

This chapter presents UT-ONE accuracy specification applied to the thermocouple probe of type S. Presented accuracy specification is applicable to measurements with auto ranging feature enabled and use of external cold-junction compensation. For measurements with internal cold-junction compensation, add the specified cold-junction accuracy.
Note that presented accuracy is the accuracy of measurement instrument only and does not include probe drift and accuracy!

Figure 132: UT-ONE accuracy specification for type S thermocouple probe
As a convenience to the user, graphs of type S thermocouple probe emf and sensitivity are presented. Note that this is a general property of this particular type of probes and is not originating from UT-ONE characteristics.

Figure 133: Emf and sensitivity characteristic for type S thermocouple probe

9.3 Auxiliary channels

External ambient conditions probe (optional)	
Sensor type	Sensirion SHT75
Extension cable	2 metre
Sampling period	4 seconds
Response time	1 minute (typical)
Probe characterization	Polynomial correction function
Temperature range	-20 to $70^{\circ} \mathrm{C}$
Temperature resolution	$0.01^{\circ} \mathrm{C}$
Temperature accuracy	$\pm 0.5^{\circ} \mathrm{C}$
Relative humidity range	10% rh to 90% rh, non-condensing
Relative humidity resolution	$0.05 \% r h$
Relative humidity accuracy	$\pm 2 \% r h ~(a t ~$

Internal CJC thermometer	
Sensor type	Digital temperature sensor
Sampling period	1 second
Response time	10 minutes (typical)
Probe characterization	Polynomial correction function
Temperature range	5 to $45^{\circ} \mathrm{C}$
Temperature resolution	$0.01^{\circ} \mathrm{C}$
Temperature accuracy	$\pm 0.4^{\circ} \mathrm{C}$
CJC accuraCy	$\pm 0.5^{\circ} \mathrm{C}$ (assuming stable ambient temperature)

9.4 Environmental specifications

Operating environment:

Operating temperature:
Operating relative humidity:
Storage temperature:
Storage relative humidity:
laboratory and light industrial environment, indoor use only, avoid dust, water vapour and fumes
$10^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$
20 \%rh to 80 \%rh, non-condensing
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
0 \%rh to 95 \%rh, non-condensing

10 Troubleshooting

1. Device will not start when I press the ON/OFF button.

You are running on battery and your battery is fully discharged. Check if the external power supply or USB cable are attached and powered. If you are running on low battery, you may have to press the ON/OFF button for a few seconds in order to start.
2. The device stopped responding to touch screen, communication interface and/or ON/OF button.
Press and hold the ON/OFF button for more than ten seconds. This will execute a hardware shutdown of the power supplies and reset the device. Wait at least 30 seconds before restarting the device.
3. The display is displaying * instead of the measured temperature.

Make sure the particular channel is enabled and acquisition is started.
4. The acquisition was started, but there is no response on the screen. Check the averaging time. The maximum averaging time is 240 seconds per channel, which require up to 12 minutes before the first reading is displayed.
5. The temperature readings are completely incorrect. Check the raw data value (resistance or emf).
If the raw data is within expected value, the problem is in probe coefficients. Check if the correct probe is selected. Check probe coefficients for typing and calculation errors.
If the raw data is invalid, check the measurement range. Check probe connections. Check if a PRT and a thermocouple are simultaneously connected on the same channel. Check probe leads for broken wires and short circuits. Try the probe on a different channel and on a different instrument.
6. The unit is acquiring and displaying data numerically, but graph is not updated. Data is stretched over long time period with a gap between readings. Use long-touch on CLEAR button to clear old data and long-touch on ZOOM button to enable auto-scaling. New readings will now be normally displayed on graph. Note that all data remains stored in internal memory, but it is no longer displayed on the graph.
7. Ambient conditions from the external probe are not refreshed or showing illegal values.

Ambient conditions from the external probe are refreshed and logged only when acquisition sequence is started. If you require only the acquisition of ambient conditions, disable channels $\mathrm{C} 1, \mathrm{C} 2$ and C 3 , and start the acquisition sequence.
Check if the external probe is properly attached. You may try to attach the external probe directly without the extension cable.
8. The measurements are noisier than expected according to specifications.

Use the device away from sources of electromagnetic interference, such as electric motors, switched-mode power supplies, wireless communication devices, etc.
Use a shielded and grounded cable for your probes.
Cover the connectors of thermometer probes. Exposure to severe draft conditions may cause excessive parasitic emf variations, which results in noise increase.
9. RS232 communication is not working.

Check the communication cable. Cable must be straight (extension) cable.
Check the COMx setting on the computer. Note that some USB-to-serial converters may change the COM address when attached to a different USB port.
Check the baud rate. Baud rate can be set in the COMM configuration view. Note that the new baud rate setting will be applicable only after the device is restarted.

11 Frequently Asked Questions

1. What is the temperature range of the UT-ONE?

Temperature range is limited by the thermometer probe. Note that exceeding the temperature range limits will permanently damage the thermometer probe. UT-ONE has 18 flexible measurement ranges, which allow the measurement of most commonly used platinum resistance thermometers, thermistors and thermocouples.
2. Can I measure a PRT, a thermistor and a thermocouple at the same time? UT-ONE has three channels, which can be configured individually for different probe types, measurement ranges, averaging times and measurement currents. Note however that channels are measured consecutively and not simultaneously.
3. Can I change the order of channels in the acquisition sequence? No, the channels are always acquired in ascending order, but some channels may be excluded from the acquisition sequence by disabling them.
4. Can I perform the measurements in overrange region?

Each measurement range has a safety margin of approximately 25% over its nominal range limit. Exact value of overrange is equal to the calibration coefficient for the particular measurement range. Measurements can be normally performed in the overrange region, but the accuracy, especially linearity, is degraded. Doubling the accuracy specification is usually sufficient to account for this additional error. Overrange is primarily intended for measurements of fault conditions, where measurements are normaly recorded even after the temperature limits of the probe are exceeded.
5. What is self heating?

Self heating is a phenomenon, which occurs in resistance measurement when the measurement current dissipates power in the thermometer sensor. This dissipated power additionally heats up the sensor, resulting in the self-heating error. The self heating error depends on the value of the measurement current, the probe resistance, the probe construction and the medium in which the probe is immersed. Typical values of self heating errors range from less than a mK to several tens of mK . Most thermometer probes are calibrated at specified measurement current (most commonly 1 mA for PRTs), so the selfheating error is largely included in the calibration coefficients.
6. How do I estimate the self-heating error?

Self-heating error can be easily estimated with UT-ONE by changing the value of the measurement current. The currents are selected in such ratio that the dissipated power in NORMAL setting is double compared to REDUCED setting.
Place the thermometer probe at a stable temperature. Set the measurement current setting from NORMAL to REDUCED. Record the change of temperature. Set the measurement current setting from REDUCED to NORMAL. Record the change of temperature. The sum of the absolute values of both recorded changes is equal to the estimated self-heating error at NORMAL current setting. The average of the absolute values of both recorded changes is equal to the estimated self-heating error at REDUCED current setting.
Absolute value of both recorded changes should be approximately equal, otherwise the temperature stability is insufficient. You may have to repeat the procedure several times to get a reliable result.
7. Should I use the REDUCED setting for measurement current to decrease the self-heating error in my measurements?
Measurements should be performed at the same measurement current as used in calibration of the probe. Note also that the UT-ONE specifications are applicable to measurements with NORMAL measurement current setting. Measurements with REDUCED measurement current setting will degrade noise performance, so in most cases reduction of measurement current is not recommended.
In cases where the self-heating error is the dominant source of error (if estimated self-heating
error is several tens of milikelvins), using the REDUCED measurement current setting may be beneficial. In this case, it is recommended that you calibrate the thermometer probe using the UT-ONE with the REDUCED measurement current setting (calibration must be performed using the same conditions as the following measurements).
8. Why is UT-ONE performing current reversal to suppress parasitic emf?

Parasitic emf are small voltages, which are generated when temperature gradients are present on joints of dissimilar metals. This phenomenon is called the Seebeck effect and is the same principle that is used for the operation of thermocouples. Although special care is taken to minimize parasitic emf, it cannot be completely eliminated. However, if the thermometer resistance is measured first with measurement current with one polarity and then with measurement current of opposite polarity, the averaging of the two reading eliminates the parasitic emf from the measurement results.
UT-ONE measures the resistance by averaging two readings. Each of these reading takes 1 second and uses the reversed current polarity. This eliminates any static parasitic emf, but very fast temperature variations may not be completely eliminated, resulting in a slightly increased measurement noise.
Thermocouple measurements do not have the possibility to eliminate parasitic emf, so additional effort must be made in probe design to reduce the parasitic emf generation to minimum.
9. What is cold-junction compensation in thermocouple measurements?

Thermocouples are differential thermometers, which measure the temperature difference between the hot (active) junction and the cold (reference) junction. Temperature can be therefore measured only, if the reference temperature of the cold junction is known. The process of merging the measured temperature difference and the cold junction temperature is called cold-junction compensation (CJC). Cold junction compensation can be performed in several ways.
The most accurate CJC method is to place the cold junction in ice-point bath (mixture of demineralized water and ice) at $0^{\circ} \mathrm{C}$. In this case, the temperature reading is equal to measured temperature difference in ${ }^{\circ} \mathrm{C}$ without any calculations. The disadvantage of this method is the use of ice, which is cumbersome and melts quickly.
Another CJC method requires the measurement of the CJC temperature with an additional thermometer. As the cold junction can be placed at room temperature, this additional thermometer can be very simple and with a narrow temperature range. The measured CJC temperature can then be used to compensate the cold junction at any temperature and produced the measurement result. This method is very user friendly, but is less accurate. UT-ONE supports the use of both described CJC methods. UT-ONE has a built-in internal thermometer, which measures the CJC temperature and automatically performs cold junction compensation.
10. Can I use UT-ONE for measurements of DC voltage and resistance not related to thermometry?
Although UT-ONE is specialized for temperature measurements, it can be readily used for accurate measurements of DC voltage and resistance within the available measurement ranges. However, note that the inputs are internally related to system ground, so the input configuration must have floating electric potential.
11. I accidentally set the wrong measurement range and the reading was out of range. Will this damage the device?
Setting the wrong measurement range will not damage the UT-ONE, as long as the absolute maximum limits are not exceeded. UT-ONE can handle resistance from 0Ω (short circuit) to infinity (open circuit). Maximum input voltage is limited to $\pm 1 \mathrm{~V}$. At the same time, applied voltage potential to any connector must be within -0.3 V and 3 V relative to system ground.
12. Do I have to calibrate the UT-ONE resistance and voltage ranges in regular intervals?

UT-ONE resistance and voltage ranges are factory adjusted to correct values within specified accuracy. However, as for any instrument, UT-ONE calibration values are subject to drift and regular calibration is recommended.
However, if UT-ONE is used only with a fixed set of non interchangeable thermometer probes for measurement of temperature, the combination of UT-ONE and thermometer probes can be
calibrated as single measurement instrument. This requires only temperature calibration (no voltage and resistance calibrations) and will generally produce best accuracy. The disadvantage of this approach is that the thermometer probes calibrations are linked to the particular UT-ONE unit and the readings of resistance and emf are irrelevant.

[^0]: Command message: SA?
 Response message: OKRT $:<$ Real time value $>,<$ Raw channel name $>:<$ Raw channel value $>, U N B:<R a w ~ c h a n n e l ~ u n i t>,<~ C h a n n e l ~ n a m e ~>:<~ C h a n n e l ~ v a l u e ~$ >,UNC:<Channel unit>,RNG:< Measurement range label >,CON:< Connection Configuration>,PRB:< Probe index>
 Example:
 Command message: SA?
 Response message: OKRT : 0659554014,B1 :+9.99537104000E+01,, UNB:OHM,C1 :-1.18440000000E-01, UNC:DEG,RNG:R3, CON:DF, PRB:21

 LabVIEW driver: UT-ONE Continuous Measurement Driver.vi

