PLUG-IN
 2ch DIGITAL INDICATING CONTROLLER WCL-13A

INSTRUCTION MANUAL

Shinko

Preface

Thank you for purchasing our WCL-13A Plug-in 2ch Digital Indicating Controller.
This manual contains instructions for the mounting, functions, operations and notes when operating the WCL-13A. To ensure safe and correct use, thoroughly read and understand this manual before using this controller.
To prevent accidents arising from the misuse of this controller, please ensure the operator receives this manual.

Abbreviations used in this manual

Symbol	Term
PV	Process Variable
SV	Desired Value
MV	Output Manipulated Variable
AT	Auto-tuning
Alarm	Temperature Alarm

Characters used in this manual

Indication	-i	$\stackrel{\square}{17}$!	$\stackrel{\square}{\square}$	$\underline{\square}$	4	5	E	7	9	9	I-	F	
Number, ${ }^{\circ} \mathrm{C} / \mathrm{F}^{\circ}$	-1	0	1	2	3	4	5	6	7	8	9	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	
Indication	17	\cdots	に	I	A	E	1	$\stackrel{\text { İ }}{1}$	-	'	-	I	i	$\stackrel{\square}{1}$
Alphabet	A		B	C	D	E	F	G	H	I	J	K	L	M
Indication	\square	\square	$\stackrel{\square}{1}$	9	r	4	!	!	H	\square	$\underline{\square}$	-	こ	
Alphabet	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	

\triangle Caution

- This instrument should be used in accordance with the specifications described in the manual.

If it is not used according to the specifications, it may malfunction or cause a fire.

- Be sure to follow the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed on a DIN rail within a control panel. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos Co., Ltd. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.
Safety Precautions (Be sure to read these precautions before using our products.)
The safety precautions are classified into 2 categories: "Warning" and "Caution". Depending on the circumstances, procedures indicated by $\widehat{\wedge}$ Caution may result in serious consequences, so be sure to follow the directions for usage.

Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

\triangle Warning

- To prevent an electrical shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

\triangle SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for industrial machinery, machine tools and measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

\$. Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

1. Installation Precautions

4. Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $122^{\circ} \mathrm{F}$) that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing.
- No water, oil or chemicals or where the vapors of these substances can come into direct contact with the unit
- If the WCL-13A is installed within a control panel, the ambient temperature of the unit - not the ambient temperature of the control panel - must be kept to under $50^{\circ} \mathrm{C}$. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

Note: Do not install this instrument directly on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring Precautions

Caution

- Do not leave wire remnants in the instrument, because they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the WCL-13A.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the controller.
(Recommended fuse: Time-lag fuse, rated voltage 250 V AC , rated current 2 A)
- For a $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{power} \mathrm{source} ,\mathrm{do} \mathrm{not} \mathrm{confuse} \mathrm{polarity} \mathrm{when} \mathrm{using} \mathrm{direct} \mathrm{current} \mathrm{(DC)}$.
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use a thermocouple and compensating lead wire according to the sensor input specifications of this controller.
- Use the 3-wire RTD according to the sensor input specifications of this controller.
- When using a relay contact output type, externally use a relay according to the load capacity to protect the built-in relay contact.
- When wiring, keep input wires (thermocouple, RTD, etc.) away from AC power sources or load wires.

3. Operation and Maintenance Precautions

Caution

- It is recommended that auto-tuning be performed during the trial run.
- Do not touch live terminals. This may cause an electrical shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning.

Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.

- Use a soft, dry cloth when cleaning the instrument.
(Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

Contents

1. Model 6
1.1 Model 6
1.2 How to Read the Model Label 6
2. Names and Functions of Controller 7
3. Mounting to the Control Panel 8
3.1 Site Selection 8
3.2 External Dimensions (Scale: mm) 8
3.3 Current Transformer (CT) Dimensions (Scale: mm) 8
3.4 Mounting to a DIN Rail 9
4. Removal from a DIN Rail 11
5. Wiring 12
5.1 Lead Wire Solderless Terminal 12
5.2 2ch Controller Spec 13
5.3 Timer Spec. 14
5.4 Potentiometer Input Spec. 14
5.5 Wiring Example 15
5.6 Wiring Example of Heater Burnout Alarm (W, W3 option) 16
5.7 Wiring Example of Alarm Output (AO option) 17
5.8 Wiring Example of Heater Burnout Alarm (single-phase) + Alarm Output (AW option) 18
5.9 Wiring Example of Serial Communication (C5 option) 19
6. Outline of Key Operation and Setting Groups 20
6.1 Outline of Key Operation 20
6.2 Setting Groups 20
6.3 Basic Operation Procedure 21
7. Key Operation Flowchart 22
8. Setup 24
8.1 Turn the Power Supply to the WCL-13A ON 24
8.2 CH1 Function Group 25
8.3 CH2 Function Group 30
8.4 Basic Function Group 34
9. Settings 39
9.1 SV Group 39
9.2 CH1 Parameter Group 40
9.3 CH2 Parameter Group 43
10. Operation 46
10.1 Starting Operation 46
10.2 Switching PV/SV 46
10.3 Indicating MV 46
10.4 AT Perform/Cancel 46
10.5 Performing Cascade Control 47
11. Action Explanation 48
11.1 CH1, CH2 Output Action 48
11.2 CH1, CH2 Output ON/OFF Control Action 48
11.3 CH1, CH2 Alarm Action 49
11.4 Heating/Cooling Control Action 50
11.5 Heating/Cooling Control Action (When Setting Dead Band) 51
11.6 Heating/Cooling Control Action (When Setting Overlap Band) 52
12. AT/Auto-Reset of This Controller 53
12.1 AT (Auto-Tuning) 53
12.2 Auto-reset (Offset Correction) 53
13. Specifications 54
13.1 Standard Specifications 54
13.2 Optional Specifications 62
14. Troubleshooting 64
14.1 Indication 64
14.2 Key Operation 65
14.3 Control 66
15. Character Tables 67

1. Model

1.1 Model

WCL-1 3	A			$\square / \square \square$		\square,	$\square \square \square$	Series name: WCL-13A	
Control action 3								PID	
Alarm action	A							Alarm type can be selected by keypad. (*1)	
CH1 control output		R						Relay contact: 1a	
		S						Non-contact voltage (for SSR drive): 12 V DC $\pm 15 \%$	
		A						Direct current: 4 to 20 mADC	
CH 2 control output			R					Relay contact: 1a [Timer spec (*2)]	
			S					Non-contact voltage (for SSR drive): 12 V DC $\pm 15 \%$	
			A					Direct current: 4 to 20 mADC (*3)	
CH1 input				M				Multi-range (*4)	
				I				Infrared thermocouple (*5)	
CH 2 input					M			Multi-range (*4)	
					I			Infrared thermocouple (*5)	
					P			Potentiometer	
					T			Timer spec (*2)	
Power supply voltage								100 to $240 \mathrm{~V} \mathrm{AC} \mathrm{(standard)}$	
						1		$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{(*6)}$	
Option							W(20A)	Single-phase 100 A 3-phase 20 A	Heater burnout alarm(*7)
							W(100A)		
							W3(20A)		
							W3(100A)	3 -phase 100 A	
							AO	Alarm output [2-points open collector output + 4-points status flag (for each channel)] (*8)	
							AW(20A)	Heater burnout alarm (single-phase 20 A) + Alarm output [1-point open collector output + 4-points status flag (for each channel)]$(* 7)(* 8)(* 9)$	
							AW(100A)	Heater burnout alarm (single-phase 100 A) + Alarm output [1-point open collector output + 4-points status flag (for each channel)]$(* 7)(* 8)(* 9)$	
							C5	RS-485	Serial communication

(*1) Alarm types (9 types and No Alarm action) can be selected by keypad.
(*2) If Timer spec is designated for CH 2 input, CH 2 control output will be Relay contact (Timer spec).
(*3) When using Transmission output spec, specify direct current output for CH 2 control output.
(*4) Thermocouple (10 types), RTD (2 types), direct current (2 types), or DC voltage (4 types) can be selected by keypad.
(*5) 8 types of Infrared thermocouple input (RD-300 series, RD-401) can be selected by keypad.
(*6) Power supply voltage 100 to 240 VAC is standard. When ordering $24 \mathrm{~V} \mathrm{AC/DC}$, enter " 1 " after the CH2 input code.
(*7) Heater burnout alarm cannot be added to the direct current output type.
(*8) If CH 2 input is potentiometer or timer spec, this cannot be added.
(*9) Options [W], [W3], [AO], [AW] cannot be added simultaneously.

1.2 How to Read the Model Label

The model label is attached to the left side of case.

- Label on the case

WCL-3A-RR/MM	- Model, Option
\} NUTT1:MULT-RANGE	
NPUT2:MULT-RANGE	CH2 input
OUTPUT1: 3 A 250V AC	CH1 output
	CH2 output
SERIAL No.097F05000	CH2 ouput
	Serial number

(Fig. 1.2-1)

2. Names and Functions of Controller

(Fig. 2-1)

Displays

CH1 PV/SV Display (Red): PV, SV, MV or setting characters in setting mode of CH1 are indicated. Indications differ depending on the spec and selections in [Display selection (p.37)].
CH2 PV/SV Display (Red): PV, SV, MV or set values in setting mode of CH 2 are indicated. Indications differ depending on the spec and selections in [Display selection (p.37)].

Indicators

CH1 OUT indicator (Green): Lights when CH 1 control output is ON .
For direct current output type, it flashes corresponding to the MV in 125 ms cycles.
CH1 EVT indicator (Red): Lights when Alarm, Loop Break Alarm or Heater Burnout Alarm output (W, W3 option) on CH 1 is ON .
CH1 AT indicator (Yellow): Flashes when CH 1 is performing AT or Auto-reset.
PWR indicator (Yellow): Lights when power supply to the instrument is turned ON.
CH2 OUT indicator (Green): Lights when CH 2 control output is ON . For direct current output type, it flashes corresponding to the MV in 125 ms cycles. For Timer spec, it lights when timer output is ON.
CH2 EVT indicator (Red): Lights when Alarm, Loop Break Alarm or Heater Burnout Alarm output (W, W3 option) on CH 2 is ON .
CH2 AT indicator (Yellow): Flashes when CH 2 is performing AT or Auto-reset.
T/R indicator (Yellow): Lights during Serial communication (C5 option) TX output (transmitting).
Keys
UP key: Increases the numeric value.
∇ DOWN key:
Decreases the numeric value.
While this key is pressed in PV/SV Display Mode, the SV can be indicated when PV is indicated, and vice versa.MODE key: \quad Selects the setting group. If the MODE key is pressed for 3 sec in PV/SV Display Mode, the unit moves to MV indication mode. The 1st decimal point from the right flashes in 500 ms cycles during the MV indication.
By pressing the MODE key again, the unit reverts to PV/SV Display Mode.SET/RESET key: Switches the setting modes, and registers the set value.
For Timer spec, resets the timer action when Control timer is working.
Console communication connector: By connecting to the USB communication cable (CMB-001, sold separately), the following operations can be conducted from an external computer using the Console software SWS-WCL01M: Reading and setting of SV, PID and various set values, Reading of PV and action status, Function change
Light sensor: Automatically measures and controls brightness of the $\mathrm{CH} 1, \mathrm{CH} 2 \mathrm{PV} / \mathrm{SV}$ Displays.

\triangle Notice

When setting the specifications and functions of this controller, connect terminals 13 and 14 to a mains cable first, then set them referring from " 6 . Outline of Key Operation and Setting Groups" to " 8 . Setup" before performing " 3 . Mounting to the Control Panel" and " 5 . Wiring".

3. Mounting to the Control Panel

3.1 Site Selection

\triangle Caution

Use within the following temperature and humidity ranges.
Temperature: 0 to $50^{\circ} \mathrm{C}$ (32 to $122^{\circ} \mathrm{F}$) (No icing), Humidity: 35 to 85% RH (Non-condensing)
If the WCL-13A is installed within a control panel, the ambient temperature of the unit - not the ambient temperature of the control panel - must be kept under $50^{\circ} \mathrm{C}$. Otherwise the life of electronic components (especially electrolytic capacitors) may be shortened.
This instrument is intended to be used under the following environmental conditions
(IEC61010-1): Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $122^{\circ} \mathrm{F}$) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit
3.2 External Dimensions (Scale: mm)

	10
$\begin{aligned} & 0,0808 \\ & 500.20 .0 \end{aligned}$	
$\begin{aligned} & \text { ch2 } \\ & \text { Bu, } 8,0,0 \\ & 0.0 .0 \end{aligned}$	
$\underbrace{\text { out evt evi }}{ }^{\text {AT }}$	
\triangle Q	
$\nabla \frac{\text { SET }}{\text { SeSET }}$	
S°	
\rightleftarrows	v
	m^{\uparrow}
30	

3.3 Current Transformer (CT) Dimensions (Scale: mm)

CTL-6-S-H (for 20 A)

(Fig. 3.2-1)
Socket (sold separately)

CTL-12-S36-10L1U (for 100 A)
(Fig. 3.3-1)

3.4 Mounting to a DIN Rail

(1) Hook the upper part of the socket on the DIN rail, and mount it (A clicking sound is heard).

Hook the upper part of the socket on the DIN rail.
(Fig. 3.4-1)

\triangle Caution

Before inserting the WCL-13A into the socket, wire the unit while referring to Section " 5 . Wiring".
(2) Check that the Lock Release has been lowered.

(Fig. 3.4-2)
(3) Insert the WCL-13A into the socket.

(Fig. 3.4-3)
(4) Fix the WCL-13A and the socket by pushing the Lock Release up.

(Fig. 3.4-4)

4. Removal from a DIN Rail

(1) Turn the power supply to the unit OFF.
(2) Pull the Lock Release down, and release the WCL-13A from the socket.

(Fig. 4-1)
(3) Separate the WCL-13A from the socket.

(Fig. 4-2)
(4) Remove the socket from the DIN rail by pulling the Socket Lock Release (at the bottom of the socket) down.

(Fig. 4-3)

5. Wiring

\triangle Warning

Turn the power supply to the instrument off before wiring or checking.
Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

\triangle Caution

- Do not leave wire remnants in the instrument, because they could cause a fire and/or malfunction
- Use a solderless terminal with an insulation sleeve in which an M3 screw fits when wiring the instrument.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This controller does not have a built-in power switch, circuit breaker and fuse. Therefore, it is necessary to install a power switch, circuit breaker and fuse in a circuit near the external controller.(Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use a thermocouple and compensating lead wire that correspond to the sensor input specification of this controller.
- Use the 3-wire RTD corresponding to the input specification of this controller.
- When using a relay contact output type, externally use a relay according to the capacity of the load to protect the built-in relay contact.
- When wiring, keep input wires (thermocouple, RTD, etc.) away from AC sources or load wires.

5.1 Lead Wire Solderless Terminal

Use a solderless terminal with an insulation sleeve in which an M3 screw fits as follows.
For the sockets with finger-safe \& screw fall prevention functions, the ring terminals are unusable.
The tightening torque should be $0.63 \mathrm{~N} \cdot \mathrm{~m}$.

Solderless Terminal	Manufacturer	Model
Y-type	Nichifu Terminal Industries CO.,LTD.	TMEV1.25Y-3S
Ring-type	Nichifu Terminal Industries CO.,LTD.	TMEV1.25-3
	Japan Solderless Terminal MFG CO.,LTD.	V1.25-3

(Fig. 5.1-1)

5.2 2ch Controller Spec.

RS-485
[Serial communication (C5 option)] Modular jack pin arrangement:

No. 1 No. 6 \square	No. 1	COM
	No. 2	NC
No. 1 No. 6 \square	No. 3	YB(+)
	No. 4	YA(-)
RS-485	No. 5	NC
	No. 6	COM

(The above diagram shows controller side arrangement.)
(*1) If the following is selected from Console software Block Function, close CH 2 input terminals (5) and (6).
If nothing is connected to CH 2 input terminals, which will be read as an input error, control will be disabled and control output will be turned OFF.

- When Heating/Cooling control output spec is selected for Control 1 block.
- When Output 2 output spec is selected for Output 1 block.
- When 1-input 2-output spec is selected.
(*2) For direct current input, connect a 50Ω shunt resistor (sold separately) between input terminals.
(*3) If Alarm output (AO option) is added, 4-points of Alarm output are available.
If the AW option [Heater Burnout alarm (Single-phase) + Alarm output] is added, 2-points Heater Burnout alarm (CT) input and 2-points Alarm output are available.
(Fig. 5.2-1)

5.3 Timer Spec.

RS-485
[Serial communication (C5 option)] Modular jack pin arrangement:

No. 1	No. 1	COM
	No. 2	NC
No. 1	No. 3	YB(+)
No. 6	No. 4	YA(-)
RS-485	No. 5	NC
	No. 6	COM

(The above diagram shows controller side arrangement.)
(*) For direct current input, connect a 50Ω shunt resistor (sold separately) between input terminals.
(Fig. 5.3-1)

5.4 Potentiometer Input Spec.

RS-485
[Serial communication (C5 option)]
Modular jack pin arrangement:

No. 1	No. 1	COM
	No. 2	NC
	No. 3	YB(+)
No. 6 \qquad	No. 4	YA(-)
RS-485	No. 5	NC
	No. 6	CO

(The above diagram shows controller side arrangement.)
(*1) For direct current input, connect a 50Ω shunt resistor (sold separately) between input terminals.
(*2) Effective when "Heating/Cooling control output" for Control 1 block or " 1 -input 2-output" for Output 1 block is selected (Console software Block function).
(Fig. 5.4-1)

5.5 Wiring Example

- WCL-13A-RR/MM (2ch controller spec: Relay contact output and Multi-range input for both CH 1 and CH 2)

(Fig. 5.5-1)
- WCL-13A-SS/MM (2ch controller spec: Non-contact voltage output and Multi-range input for both CH1 and CH 2)

(Fig. 5.5-2)

5.6 Wiring Example of Heater Burnout Alarm (W, W3 option)

When Heater burnout alarm (W, W3 option) is added: Heater burnout alarm (CT) input connectors for CH 1 and CH 2 are equipped on the top of the unit.

Single-phase $20 \mathrm{~A}, 100 \mathrm{~A}$: CT1 (CT input for CH 1), CT 3 (CT input for CH 2)
3-phase $20 \mathrm{~A}, 100 \mathrm{~A}: \mathrm{CT} 1, \mathrm{CT} 2$ (CT input for CH 1), CT3, CT4 (CT input for CH)

Single-phase Heater:

(1) Pass the heater wire into the CT hole, and solder the wires of the wire harness provided.
(2) CH 1 : Insert the wire harness into the CT1 input connector.

CH 2 : Insert the wire harness into the CT3 input connector.

(Fig. 5.6-1)

3-phase Heater:

(1) Pass any 2 heater wires of R, S and T into the holes of $C T 1$ and CT2, and solder the wires of the wire harness provided.
(2) CH 1 : Insert the wire harness into the CT1 and CT2 input connectors.

CH 2 : Insert the wire harness into the CT3 and CT4 input connectors.

(Fig. 5.6-2)

5.7 Wiring Example of Alarm Output (AO option)

If Alarm output (AO option) is added, Alarm output connectors will be equipped on the top of the unit.
The following shows connector numbers and corresponding alarm output.
(Table 5.7-1)

Connector No.	Alarm Output
1	CH1 Event 1 output
2	CH1 Event 2 output
3	CH2 Event 1 output
4	CH2 Event 2 output

Select an alarm type for Event 1 output in [Event 1 output]. (pp. 28, 32)
Select an alarm type for Event 2 output in [Event 2 output]. (pp. 28, 32)
If any alarm is active, the output will be turned ON. The output is OR output.
Output specifications are shown below.
Open collector: Control capacity, 0.1 A 24 V DC

Wiring Example of Alarm Output
WCL-13A top view

(Fig. 5.7-1)

5.8 Wiring Example of Heater Burnout Alarm (single-phase) + Alarm Output (AW option)

If the AW option [Heater burnout alarm (single-phase) + Alarm output] is added, connectors for the Heater burnout alarm (CT) input and Alarm output will be equipped on the top of the unit.

The following shows connector numbers and corresponding Heater burnout alarm (CT) input and Alarm output.
(Table 5.8-1)

Connector No.	CT Input, Alarm Output
1	CH1 CT input
2	CH1 Event 2 output
3	CH2 CT input
4	CH2 Event 2 output

Select an alarm type for Event 2 output in [Event 2 output]. (pp. 28, 32)
If any alarm is active, the output will be turned ON. The output is OR output.
Output specifications are shown below.
Open collector: Control capacity, 0.1 A 24 V DC

Wiring Method of CT

(1) Pass the heater wire into the hole of CT, and solder the wires of the wire harness provided. There is no polarity.
(2) CH 1 : Insert the wire harness into the CH 1 CT input connector.

CH 2 : Insert the wire harness into the CH 2 CT input connector.
Wiring Example of Heater Burnout Alarm (CT) input and Alarm Output

(Fig. 5.8-1)

5.9 Wiring Example of Serial Communication (C5 option)

When the Serial Communication (C5 option) is added, a modular jack is equipped at the bottom of the controller.

Wiring example using the IF-400 communication converter

- D-sub 9-pin Connector

(Fig. 5.9-1)
- D-sub 25-pin Connector

Shield Wire

Connect only one end of the shield wire so that current cannot flow to the shield wire. If both ends of the shield wire are connected, the circuit will be closed, resulting in a ground loop. This may cause noise.
Recommended cable: OTSC-VB 2PX0.5SQ (made by Onamba Co., Ltd.) or equivalent (Use a twisted pair cable.)

Terminator (Terminal Resistor)

The terminator is mounted at the end of the wire when connecting multiple peripheral devices to a personal computer. The terminator prevents signal reflection and disturbance.
Do not connect a terminator to the communication line because the WCL-13A has built-in pull-up and pull-down resistors.

6. Outline of Key Operation and Setting Groups

6.1 Outline of Key Operation

Setting items are divided into groups, and group selection has to be made with keypads.
Press the \square key in PV/SV Display Mode. The unit enters Group selection mode.

To set each setting item, use the \triangle or ∇ key, and register the value with the

6.2 Setting Groups

The following shows the setting group configuration.

(*1) In PV/SV Display Mode, indicates a setting item selected in [Display selection].
(*2) Indications differ depending on the selection in the $\mathrm{CH} 1, \mathrm{CH} 2$ parameter group.
(*3) In PV/SV Display Mode, the PV/SV indications will switch.
$\mathrm{PV}(\mathrm{SV})$ does not switch if a $\mathrm{CH} 1, \mathrm{CH} 2$ difference or addition inclusive item is selected in [Display selection] in the Basic function group.
(*4) Not available for Potentiometer input spec.
(*5) Not available for Timer spec, Potentiometer input spec. Not available if Heating/Cooling control or External setting input is selected from the Block function (Console software).
(*6) Not available for Timer spec, Potentiometer input spec. Not available if Heating/Cooling control is selected from the Block function (Console software).
(*7) If Cascade control spec is selected from the Block function (Console software), CH1 SV will become the AT point of the slave.
(*8) Not available for Timer spec. Not available if Heating/Cooling control or External setting input is selected from the Block function (Console software).

6.3 Basic Operation Procedure

Basic operation procedure is shown below.

Setting Example

CH 2 function: Used as a CH 2 controller (2ch controller spec).
Input: $\quad \mathrm{Pt} 100:-199.9$ to $850.0^{\circ} \mathrm{C}$ (for $\mathrm{CH} 1, \mathrm{CH} 2$)
Control action: PID control (P, I, D and ARW values are automatically set by performing AT) (for $\mathrm{CH} 1, \mathrm{CH} 2$)
Alarm 1 type: High limit alarm (for $\mathrm{CH} 1, \mathrm{CH} 2$)
Alarm 1 value: $10.0^{\circ} \mathrm{C}$ (for $\mathrm{CH} 1, \mathrm{CH} 2$)
SV: CH1:200.0으․
CH2: $210.0^{\circ} \mathrm{C}$
Operation Procedure

1. Operation before running	Turn the load circuit power OFF, and turn the power supply to the controller ON.
2. CH 1 function group CH 2 function group	Select each input type, Alarm 1 type, etc. in the $\mathrm{CH} 1, \mathrm{CH} 2$ function groups. (2) Select [H: H : High limit alarm] in [1 F IF n : Alarm 1 type]. Setting items (3) and (4) will be indicated. Set them as needed. [Note] When Alarm 1 type is changed, Alarm 1 value defaults to 0 (0.0). Therefore, set it again. (3) Set Alarm 1 hysteresis in [F 估 1 : Alarm 1 hysteresis]. (4) Set Alarm 1 delay time in [17 保: Alarm 1 delay time].
3. SV group	Set the SV in the SV group. (5) Set to $200.0^{\circ} \mathrm{C}$ in ${ }^{1} \mathrm{CH}$ SV]. (6) Set to $210.0^{\circ} \mathrm{C}$ in $\left[\begin{array}{ll}l^{\prime} & \mathrm{CH} 2 \mathrm{SV}] \text {. }\end{array}\right.$
4. Start the controller	Turn the load circuit power ON. Control action starts so as to keep the control target at the SV.
5. AT Perform	Perform AT in the $\mathrm{CH} 1, \mathrm{CH} 2$ parameter groups respectively. (7) Select [BM: AT Perform] in [BT: AT/Auto-reset Perform/Cancel]. The AT indicator flashes while AT is performing. The AT indicator turns off after AT is finished. [Note] After AT is finished, P, I, D and ARW values are automatically set. Since these values are internally memorized, it is not necessary to perform AT again as long as the process is the same.
6. CH 1 parameter group CH2 parameter group	Set each Alarm 1 value in the $\mathrm{CH} 1, \mathrm{CH} 2$ parameter groups after AT is finished. (8) Set the value to $10.0^{\circ} \mathrm{C}$ in [17, $\mathrm{\square}$: Alarm 1 value].

Setting items (1) to (8) are indicated in Section " 7 . Key Operation Flowchart" (Pages 22, 23).

7. Key Operation Flowchart

Power ON

५:T CH 1 SV

- Upper left (CH1 PV/SV Display): Indicates setting item characters.

Lower left (CH2 PV/SV Display): Indicates factory default value.
Right side: Indicates the setting item.

- Setting items with dotted lines are optional, and they appear when the corresponding option is ordered.
- \square : Available when each spec is selected from the Block function (Console software).
[Key Operation]

- If the key is pressed for 3 seconds at any setting item, the unit reverts to PV/SV Display Mode.

8．Setup

Setup（setting the input type，Alarm type，and control action，etc．of CH 1 and CH 2 ）should be done before using this controller，according to the user＇s conditions．
Setup can be conducted in the $\mathrm{CH} 1, \mathrm{CH} 2$ function groups and Basic function group．
If the user＇s specification is the same as the factory default value of the WCL－13A，or if setup has already been complete，it is not necessary to set up the controller．Proceed to Chapter＂ 9 ．Settings＂．

8．1 Turn the Power Supply to the WCL－13A ON．

－For approx． 4 seconds after the power is switched ON，the sensor input characters and temperature unit are indicated on PV／SV Display of CH 1 and CH 2 ．（Table．8．1－1）（Table．8．1－2）
During this time，all outputs and LED indicators are in OFF status．
－After that，the item selected in［Display selection］is indicated．
（Table．8．1－1）Multi－range Input

Sensor Input	${ }^{\circ} \mathrm{C}$		F	
	PV／SV Display	Setting Range	PV／SV Display	Setting Range
K	LTL	-200 to $1370{ }^{\circ} \mathrm{C}$	HTF	-320 to $2500{ }^{\circ} \mathrm{F}$
	1 E	－199．9 to $400.0{ }^{\circ} \mathrm{C}$	GIF	－199．9 to $750.0{ }^{\circ} \mathrm{F}$
J	W L	－200 to $1000{ }^{\circ} \mathrm{C}$	Wロ	-320 to $1800{ }^{\circ} \mathrm{F}$
R	－ 5	0 to $1760{ }^{\circ} \mathrm{C}$	－TT	0 to $3200{ }^{\circ} \mathrm{F}$
S	4 E	0 to $1760{ }^{\circ} \mathrm{C}$	4ロF	0 to $3200{ }^{\circ} \mathrm{F}$
B	पपE	0 to $1820{ }^{\circ} \mathrm{C}$	ロロF	0 to $3300{ }^{\circ} \mathrm{F}$
E	GपL	－200 to $800{ }^{\circ} \mathrm{C}$	EXF	－320 to $1500{ }^{\circ} \mathrm{F}$
T	\cdots	－199．9 to $400.0{ }^{\circ} \mathrm{C}$	F．F	－199．9 to $750.0{ }^{\circ} \mathrm{F}$
N	त区	－200 to $1300{ }^{\circ} \mathrm{C}$	NTF	－320 to $2300{ }^{\circ} \mathrm{F}$
PL－II	F\％	0 to $1390{ }^{\circ} \mathrm{C}$	FRF	0 to $2500{ }^{\circ} \mathrm{F}$
C（W／Re5－26）	CTL	0 to $2315{ }^{\circ} \mathrm{C}$	$\square \mathrm{C}$	0 to $4200{ }^{\circ} \mathrm{F}$
Pt100	F＇${ }^{-1}$	－199．9 to $850.0{ }^{\circ} \mathrm{C}$	FIF	－199．9 to $999.9{ }^{\circ} \mathrm{F}$
JPt100	MFIT	－199．9 to $500.0{ }^{\circ} \mathrm{C}$	MFIF	－199．9 to $900.0{ }^{\circ} \mathrm{F}$
Pt100	FTL	－200 to $850{ }^{\circ} \mathrm{C}$	Fror	-300 to $1500{ }^{\circ} \mathrm{F}$
JPt100	LIF！	－200 to $500{ }^{\circ} \mathrm{C}$	LFFF	－300 to $900{ }^{\circ} \mathrm{F}$
4 to 20 mADC				
0 to 20 mADC	吅ロは			
0 to 1 V DC	家	－1999 to 9999		
0 to 5 V DC	－5は	－1999 to 9999		
1 to 5 V DC	－5は			
0 to 10 V DC	\％			

（Table 8．1－2）Infrared Thermocouple（Infrared TC）Input

RD－300 Series， RD－401	PV／SV Display	Setting Range
－18 to $25^{\circ} \mathrm{C}$	！！17\％	-50 to $500{ }^{\circ} \mathrm{C}$
5 to $45^{\circ} \mathrm{C}$	1 シーロ	-50 to $500{ }^{\circ} \mathrm{C}$
25 to $80^{\circ} \mathrm{C}$	1 ERE	-50 to $500{ }^{\circ} \mathrm{C}$
70 to $105^{\circ} \mathrm{C}$	；回年号	－50 to $500{ }^{\circ} \mathrm{C}$
90 to $120^{\circ} \mathrm{C}$	－に－ロ	－50 to $500{ }^{\circ} \mathrm{C}$
115 to $155^{\circ} \mathrm{C}$	＇${ }^{1-1 /}$	-50 to $500{ }^{\circ} \mathrm{C}$
145 to $190^{\circ} \mathrm{C}$	¢ 172	-50 to $500{ }^{\circ} \mathrm{C}$
180 to $250^{\circ} \mathrm{C}$	1 シージ	-50 to $500{ }^{\circ} \mathrm{C}$
-18 to $25^{\circ} \mathrm{C}$	¢ 1110	-58 to $932{ }^{\circ} \mathrm{F}$
5 to $45^{\circ} \mathrm{C}$	1 ミーロ	－58 to $932{ }^{\circ} \mathrm{F}$
25 to $80^{\circ} \mathrm{C}$	1 ERG	-58 to $932{ }^{\circ} \mathrm{F}$
70 to $105^{\circ} \mathrm{C}$	；G1\％	-58 to $932{ }^{\circ} \mathrm{F}$
90 to $120^{\circ} \mathrm{C}$	－にース	-58 to $932{ }^{\circ} \mathrm{F}$
115 to $155^{\circ} \mathrm{C}$	；1－1F	-58 to $932{ }^{\circ} \mathrm{F}$
145 to $190^{\circ} \mathrm{C}$	1 11	-58 to $932{ }^{\circ} \mathrm{F}$
180 to $250^{\circ} \mathrm{C}$	－シーム	-58 to $932{ }^{\circ} \mathrm{F}$

To enter the CH 1 function group，follow the procedure below．
（1）F．ก．ル． 1 Press the Q key in PV／SV Display Mode until the left characters appear．

Character	Name，Function，Setting Range	Factory Default
ムEの＇	Input type －Selects an input type． －Multi－range input： Selects an input type from thermocouple types），and DC voltage（4 types），and the Setting range：Refer to（Table 8．1－1）on p When changing the input from DC volt connected to this controller first，then －Infrared thermocouple（TC）input： Selects an input type from 8 types of Infra the unit ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ ． Setting range：Refer to（Table 8．1－2）on p	Multi－range input：K（－200 to $\left.1370^{\circ} \mathrm{C}\right)$ Infrared TC input： 180 to $250^{\circ} \mathrm{C}$ RTD（2 types），Direct current（2 er inputs，remove the sensor he input． ocouple（RD－300 series，RD－401）and
H゙号	Scaling high limit －Sets Scaling high limit value． －For thermocouple，RTD，Infrared TC inputs， －Setting range：Scaling low limit to Input ra ［Note］If CH difference input is selected software），set the Scaling high lim limit to 0 （zero）．	$\begin{aligned} & \text { Multi-range input: } 1370^{\circ} \mathrm{C} \\ & \text { Infrared TC input: } 500^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ tches SV high limit value． limit 1 block（Block function of Console nalue，and set the Scaling low

（e．g．1） 1 to 5 V DC input， 0 to 100 Scaling high limit： 100 Scaling low limit： 0
（e．g．2） 1 to 5 V DC input，-100 to 100 Scaling high limit： 200 Scaling low limit： 0

LILI
日IG：

（e．g．2）Scaling high limit： 200

H1\％	Scaling low limit Multi－range input：$-200^{\circ} \mathrm{C}$ －Sets Scaling low limit value． Infrared TC input：$-50^{\circ} \mathrm{C}$ －For thermocouple，RTD，Infrared TC inputs，this matches SV low limit value． －Setting range：Input range low limit to Scaling high limit
ara	Decimal point place －Selects decimal point place． Available for DC voltage，current inputs． － A Ir：No decimal point －Tif： 1 digit after decimal point ain： 2 digits after decimal point R10
F1，	PV filter time constant －Sets PV filter time constant． If the value is set too high，it affects control results due to the delay of response． －Setting range： 0.0 to 10.0 seconds
いロ	Sensor correction －Sets the sensor correction value． －Setting range：-100.0 to $100.0^{\circ} \mathrm{C}$ （ ${ }^{\circ}$ F）DC voltage，current inputs：－1000 to 1000 （The placement of the decimal point follows the selection．） ［Sensor correction function］

This corrects the input value from the sensor．When a sensor cannot be set at the exact location where control is desired，the sensor－measured temperature may deviate from the temperature in the controlled location．When using multiple controllers，sometimes the measured temperatures do not concur due to differences in sensor accuracy or dispersion of load capacities．In such a case，the control can be set at the desired temperature by adjusting the input value of sensors．However，it is effective within the input rating range regardless of the sensor correction value．
PV after sensor correction＝Current PV＋（Sensor correction value）
（e．g．）When PV is $198^{\circ} \mathrm{C}$ ：
If sensor correction value is set to $2.0^{\circ} \mathrm{C}$ ，PV will be $198+(2.0)=200.0^{\circ} \mathrm{C}$ ．
If sensor correction value is set to $-2.0^{\circ} \mathrm{C}$ ，PV will be $198+(-2.0)=196.0^{\circ} \mathrm{C}$ ．

Character	Name，Function，Setting Range \quad Factory Default
$\square \square$	Emissivity －Sets infrared emissivity． Setting characters and PV are alternately indicated on the CH1 PV／SV Display． Available only for Infrared thermocouple input． －Setting range： 0.100 to 1.000 times
－14	Output high limit －Sets the output high limit value． Not available if output is in ON／OFF control． If Heating／Cooling control output is selected from the Block function（Console software）， CH 1 output will be OUT1，and CH2 output will be OUT2． －Setting range：Output low limit to 100\％ （Direct current output：Output low limit to 105\％）
－1：	Output low limit －Sets the output low limit value． Not available if output is in ON／OFF control． If Heating／Cooling control output is selected from the Block function（Console software）， CH 1 output will be OUT1，and CH2 output will be OUT2． －Setting range： 0% to Output high limit （Direct current output：－5\％to Output high limit）
	Output ON／OFF hysteresis －Sets the output ON／OFF hysteresis． Available only when output is in ON／OFF control． If Heating／Cooling control output is selected from the Block function（Console software）， CH 1 output will be OUT1，and CH2 output will be OUT2． －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ， DC voltage，current inputs： 1 to 1000 （The placement of the decimal point follows the selection．）
ニRは	OUT2 cooling method －Selects OUT2 cooling method from air，oil and water cooling． －Available when Heating／Cooling control output is selected from the Block function（Console software）． Not available if OUT2 is in ON／OFF control． －Air cooling（linear characteristics） ：Oil cooling（1．5th power of the linear characteristics） Water cooling（2nd power of the linear characteristics）
ロ1H	OUT2 high limit －Sets OUT2 high limit value． －Available when Heating／Cooling control output is selected from the Block function （Console software）． Not available if OUT2 is in ON／OFF control． －Setting range：OUT2 low limit to 100% （Direct current output：OUT2 low limit to 105\％）
ロば	OUT2 low limit －Sets OUT2 low limit value． －Available when Heating／Cooling control output is selected from the Block function （Console software）． Not available if OUT2 is in ON／OFF control． －Setting range：0\％to OUT2 high limit （Direct current output：－5\％to OUT2 high limit）
ザジイ	OUT2 ON／OFF hysteresis －Sets ON／OFF hysteresis for OUT2． Available when Heating／Cooling control output is selected from the Block function （Console software）． Available only when OUT2 is in ON／OFF control． －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ，DC voltage，current inputs： 1 to 1000 （The placement of the decimal point follows the selection．）

Character	Name，Function，Setting Range	Factory Default
FHF\％	Alarm 4 type －Selects an Alarm 4 type．（Refer to Alarm 1 type．） －Available only when the AO option is added．	No Alarm action
F 以゙	Alarm 1 hysteresis －Sets Alarm 1 hysteresis． －Not available if No Alarm action is selected in［Alarm 1 type］ －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ） DC voltage，current inputs： 1 to 1000 （The plac follows the selection	$1.0^{\circ} \mathrm{C}$ ment of the decimal point
ロゴい゙	Alarm 2 hysteresis －Sets Alarm 2 hysteresis．（Refer to Alarm 1 hysteresis．） －Available only when the AO or AW option is added．	$1.0^{\circ} \mathrm{C}$
ロジロ	Alarm 3 hysteresis －Sets Alarm 3 hysteresis．（Refer to Alarm 1 hysteresis．） －Available only when the AO option is added．	$1.0^{\circ} \mathrm{C}$
ロザい゙	Alarm 4 hysteresis －Sets Alarm 4 hysteresis．（Refer to Alarm 1 hysteresis．） －Available only when the AO option is added．	$1.0^{\circ} \mathrm{C}$
Fダゴ	Alarm 1 delay time －Sets Alarm 1 action delay time． When setting time has elapsed after the input enters the Alarm is activated． －Not available if No Alarm action is selected in［Alarm 1 type］ －Setting range： 0 to 9999 seconds	0 seconds output range，the Alarm
Rゴ心	Alarm 2 delay time －Sets Alarm 2 action delay time．（Refer to Alarm 1 delay time．） －Available only when the AO or AW option is added．	0 seconds
Rジイ	Alarm 3 delay time －Sets Alarm 3 action delay time．（Refer to Alarm 1 delay time．） －Available only when the AO option is added．	0 seconds
ヷイロ゙ゴ	Alarm 4 delay time －Sets Alarm 4 action delay time．（Refer to Alarm 1 delay time．） －Available only when the AO option is added．	0 seconds
EMn	Event 1 output －Selects Event 1 output． Available only when the AO option is added． －Bincil：Alarm LF：Loop break alarm Fil：：P：Alarm＋Loop break alarm	Alarm
EEF口	Event 2 output －Selects Event 2 output． Available only when the AO or AW option is added． －Bin：Alarm L F ：Loop break alarm FII：：F：Alarm＋Loop break alarm $H \in \square$ ：Heater burnout alarm Fil Hit：Alarm＋Heater burnout alarm LFH：Loop break alarm＋Heater burnout alarm Fill：Alarm＋Loop break alarm＋Heater burnout alarm	Alarm

Character	Name，Function，Setting Range \quad Factory Default
－Ar，	SV rise rate －Sets SV rise rate（rising value for 1 minute）． Setting to 0 or 0.0 disables the function． －Setting range： 0 to $9999{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ ${ }^{\circ} / \mathrm{min}$ ．） Thermocouple，RTD input with a decimal point： 0.0 to $999.9{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ ${ }^{\circ} \mathrm{F} / \mathrm{min}$ ．） DC voltage，current input： 0 to $9999 / \mathrm{min}$ ．（The placement of the decimal point follows the selection．）
－17\％	SV fall rate －Sets SV fall rate（falling value for 1 minute）． Setting to 0 or 0.0 disables the function． －Setting range： 0 to $9999{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ ${ }^{\circ} \mathrm{F} / \mathrm{min}$ ．） Thermocouple，RTD input with a decimal point： 0.0 to $999.9{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ ${ }^{\circ} \mathrm{F} / \mathrm{min}$ ．） DC voltage，current input： 0 to $9999 / \mathrm{min}$ ．（The placement of the decimal point follows the selection．）
Eani＇	Direct／Reverse action －Selects either Reverse（Heating）or Direct（Cooling）control action． －HEAI：Reverse action（Heating） にロロー：Direct action（Cooling）
Fir－b	AT bias －Sets bias value for the AT．（See Section＂12．1 AT＂on p．53．） －Available for PID control Not available for DC voltage，current inputs． －Setting range： 0 to $50^{\circ} \mathrm{C}$（ 0 to $100^{\circ} \mathrm{F}$ ） Thermocouple，RTD inputs with a decimal point： 0.0 to $50.0^{\circ} \mathrm{C}\left(0.0\right.$ to $\left.100.0^{\circ} \mathrm{F}\right)$
	Difference（addition）indication high limit －Sets difference（addition）indication high limit value． －Available for Difference（addition）input \＆when Base channel（＊）is DC input． －Setting range：Difference（addition）indication low limit to Input range high limit
－1F！	Difference（addition）indication low limit －Sets difference（addition）indication low limit value． －Available for Difference（addition）input \＆when Base channel（＊）is DC input． －Setting range：Input range low limit to Difference（addition）indication high limit

（＊）If Difference（addition）input is selected for Input 1 block（Console software），CH1（Input 1）will be $_{\text {（ }}$ the Base channel．
If Difference（addition）input is selected for Input 2 block（Console software），CH2（Input 2）will be the Base channel．

8．3 CH2 Function Group

Not available for Timer spec or Potentiometer input spec．
Not available if Heating／Cooling control output is selected from the Block function（Console software）．
To enter the CH 2 function group，follow the procedure below．
（1）F．I．E Press the Q key in PV／SV Display Mode until the left characters appear．

Character	Name，Function，Setting Range \quad Factory Default
ーEの品	Input type Multi－range input： $\mathrm{K}\left(-200\right.$ to $\left.1370^{\circ} \mathrm{C}\right)$ - Selects an input type． Infrared TC input： 180 to $250^{\circ} \mathrm{C}$ If External setting input spec is selected from the Block function（Console software），and if the key is pressed after selecting an input type，the unit reverts to PV／SV Display Mode． －Multi－range input： Selects an input type from thermocouple（10 types），RTD（2 types），Direct current（2 types），and DC voltage（ 4 types），and the unit ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ ．See（Table 8．1－1）on p．24． －Infrared thermocouple（TC）input： Selects an input type from 8 types of Infrared thermocouple（RD－300 series，RD－401）and the unit ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ ．See（Table 8．1－2）on p． 24.
H1：	
41	Scaling low limit Multi－range input：$-200^{\circ} \mathrm{C}$ －Sets Scaling low limit value． Infrared TC input：$-50^{\circ} \mathrm{C}$ －For thermocouple，RTD，Infrared TC inputs，this matches SV low limit value． －Setting range：Input range low limit to Scaling high limit
$\square \mathrm{D}$	Decimal point place －Selects decimal point place． Available for DC voltage，current input －पI：No decimal point －10： 1 digit after decimal point IIIT： 2 digits after decimal point Dicir： 3 digits after decimal point
Fi：	PV filter time constant －Sets PV filter time constant． If the value is set too large，it affects control results due to the delay of response． －Setting range： 0.0 to 10.0 seconds
4 LD	Sensor correction －Sets the correction value for the sensor． －Setting range：－100．0 to $100.0^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ）， DC voltage，current input：－ 1000 to 1000 （The placement of the decimal point follows the selection．） ［Sensor correction function］ This corrects the input value from the sensor．When a sensor cannot be set at the exact location where control is desired，the sensor－measured temperature may deviate from the temperature in the controlled location．When using multiple controllers，sometimes the measured temperatures do not concur due to differences in sensor accuracy or dispersion of load capacities．In such a case，the control can be set at the desired temperature by adjusting the input value of sensors．However，it is effective within the input rating range regardless of the sensor correction value． PV after sensor correction＝Current PV＋（Sensor correction value） （e．g．）When PV is $198^{\circ} \mathrm{C}$ ： If sensor correction value is set to $2.0^{\circ} \mathrm{C}$ ，the PV will be $198+(2.0)=200.0^{\circ} \mathrm{C}$ ． If sensor correction value is set to $-2.0^{\circ} \mathrm{C}$ ，the PV will be $198+(-2.0)=196.0^{\circ} \mathrm{C}$ ．

Character	Name，Function，Setting Range \quad Factory Default
$\square \square$	Emissivity －Sets infrared emissivity． Setting characters and PV are alternately indicated on the CH1 PV／SV Display． Available only for Infrared thermocouple input －Setting range： 0.100 to 1.000 times
ara	Output high limit －Sets the output high limit value． Not available if output is in ON／OFF control． －Setting range：Output low limit to 100\％（Direct current output：Output low limit to 105\％）
－1：	Output low limit －Sets the output low limit value． Not available if output is in ON／OFF control． －Setting range：0\％to Output high limit（Direct current output：－5\％to Output high limit）
ドヅい	Output ON／OFF hysteresis －Sets the output ON／OFF hysteresis． Available only when output is in ON／OFF control． －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ F ），DC voltage，current input： 1 to 1000 （The placement of the decimal point follows the selection．）
日， Fi^{-}	Output rate－of－change －Sets the change value of output MV for 1 second． －Setting the value to 0 disables the function． Not available if the output is in ON／OFF control． －Setting range： 0 to 100%／second ［Output rate－of－change］ For Heating control，if PV is lower than SV，output is generally turned from OFF to ON as shown in（Fig．8．3－1）． If Output rate－of－change is set，the output can be changed by the rate－of－change（Fig． 8．3－2）． This control is suitable for high temperature heaters（which are made from molybdenum， tungsten or platinum，etc．，and used at approx． 1500 to $1800^{\circ} \mathrm{C}$ ）which are easily burnt out from turning on electricity rapidly． （Fig．8．3－1） （Fig．8．3－2）
Pr＇ri＇	Output when input errors occur －Sets the output MV when input errors occur． Available only for direct current output type． －Setting range：Output low limit to Output high limit
FiFn	Alarm 1 type －Selects Alarm 1 type． Note：If Alarm 1 type is changed，Alarm 1 value defaults to $0(0.0)$ ． －－－－：No Alarm action H■ ：High limit alarm $1 \square \square$ Low limit alarm H1：\square High／Low limits alarm －il：High／Low limit range alarm Fit \quad Process high alarm ，Fit？Process low alarm H 1 L ：Low limit with standby alarm Hit：High／Low limits with standby alarm

Character	Name，Function，Setting Range	Factory Default
BEF口	Alarm 2 type －Selects Alarm 2 type．（Refer to Alarm 1 type．） －Available only when the AO or AW option is added．	No Alarm action
ロジャ	Alarm 3 type －Selects Alarm 3 type．（Refer to Alarm 1 type．） Available only when the AO option is added．	No Alarm action
ロ4F\％	Alarm 4 type －Selects Alarm 4 type．（Refer to Alarm 1 type．） Available only when the AO option is added．	No Alarm action
F 以ら	Alarm 1 hysteresis －Sets Alarm 1 hysteresis． －Not available if No Alarm action is selected in［Alarm 1 type］ －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ） DC voltage，current input： 1 to 1000 （The placement of the de selection）	$1.0^{\circ} \mathrm{C}$ imal point follows the
Rゴ心	Alarm 2 hysteresis －Sets Alarm 2 hysteresis．（Refer to Alarm 1 hysteresis．） －Available only when the AO or AW option is added．	$1.0^{\circ} \mathrm{C}$
ロミ以゙	Alarm 3 hysteresis －Sets Alarm 3 hysteresis．（Refer to Alarm 1 hysteresis．） －Available only when the AO option is added．	$1.0^{\circ} \mathrm{C}$
ロッドき	Alarm 4 hysteresis －Sets Alarm 4 hysteresis．（Refer to Alarm 1 hysteresis．） －Available only when the AO option is added．	$1.0^{\circ} \mathrm{C}$
のばゴ	Alarm 1 delay time －Sets Alarm 1 action delay time． When setting time has elapsed after the input enters the Alarm is activated． －Not available if No Alarm action is selected in［Alarm 1 type］ －Setting range： 0 to 9999 seconds	0 seconds output range，the Alarm
Rゴ心	Alarm 2 delay time －Sets Alarm 2 action delay time．（Refer to Alarm 1 delay time．） －Available only when the AO or AW option is added．	0 seconds
のジジ	Alarm 3 delay time －Sets Alarm 3 action delay time．（Refer to Alarm 1 delay time．） －Available only when the AO option is added．	0 seconds
ワサロ゙き	Alarm 4 delay time －Sets Alarm 4 action delay time．（Refer to Alarm 1 delay time．） －Available only when the AO option is added．	0 seconds
E M	Event 1 output －Selects Event 1 output． Available only when the AO option is added． －Filin！：Alarm 1F■：Loop break alarm FiL：：P：Alarm＋Loop break alarm	Alarm
E゙Fに	Event 2 output －Selects Event 2 output． Available only when the AO option or AW option is added． －Bin in：Alarm 19：Loop break alarm FiL＿F：Alarm＋Loop break alarm HIT：Heater burnout alarm FiLH：Alarm＋Heater burnout alarm LFHE：Loop break alarm＋Heater burnout alarm Fil：Alarm＋Loop break alarm＋Heater burnout alarm	Alarm

Character	Name，Function，Setting Range ${ }^{\text {a }}$ Factory Default
－Fir	SV rise rate －Sets SV rise rate（rising value for 1 minute）． Setting to 0 or 0.0 disables the function． －Setting range： 0 to $9999{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ $\mathrm{F} / \mathrm{min}$ ．） Thermocouple，RTD inputs with a decimal point： 0.0 to $999.9{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ $\mathrm{F} / \mathrm{min}$ ．） DC voltage，current inputs： 0 to $9999 / \mathrm{min}$ ．（The placement of the decimal point follows the selection．）
－Fir	SV fall rate －Sets SV fall rate（falling value for 1 minute）． Setting to 0 or 0.0 disables the function． －Setting range： 0 to $9999{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ ${ }^{\circ} \mathrm{F} / \mathrm{min}$ ．） Thermocouple，RTD inputs with a decimal point： 0.0 to $999.9{ }^{\circ} \mathrm{C} / \mathrm{min}$ ．（ $\mathrm{F} / \mathrm{min}$ ．） DC voltage，current inputs： 0 to $9999 / \mathrm{min}$ ．（The placement of the decimal point follows the selection．）
Eani	Direct／Reverse action －Selects either Reverse（Heating）or Direct（Cooling）control action． －HEGI：Reverse action（Heating） にロロI：Direct action（Cooling）
Fir－b	AT bias －Sets bias value for AT．（See Section＂12．1 AT＂on p．53．） －Available for PID control． Not available for DC voltage，current inputs． －Setting range： 0 to $50^{\circ} \mathrm{C}\left(0\right.$ to $\left.100^{\circ} \mathrm{F}\right)$ Thermocouple，RTD input with a decimal point： 0.0 to $50.0^{\circ} \mathrm{C}$（ 0.0 to $100.0^{\circ} \mathrm{F}$ ）
BIF H^{\prime}	Difference（addition）indication high limit －Sets difference（addition）indication high limit value． －Available for Difference（addition）input \＆when Base channel（＊）is DC input． －Setting range：Difference（addition）indication low limit to Input range high limit
－1F！	Difference（addition）indication low limit －Sets difference（addition）indication low limit value． －Available for Difference（addition）input \＆when Base channel（＊）is DC input． －Setting range：Input range low limit to Difference（addition）indication high limit

（＊）If Difference（addition）input is selected for Input 1 block（Console software），CH1（Input 1）will be the Base channel．
If Difference（addition）input is selected for Input 2 block（Console software）， CH 2 （Input 2）will be the Base channel．

8．4 Basic Function Group

To enter the Basic function group，follow the procedure below．
（1）Ell Press the \mathbb{Q} key in PV／SV Display Mode until the left characters appear．

Character	Name，Function，Setting Range	Factory Default
－ロロ！	Set value lock －Locks the set values to prevent setting errors． Selects Unlock or Lock． －When Lock is selected，AT and Auto－reset cannot be carried out． －－－－（Unlock）：All set values can be changed． Lar ！（Lock 1）：None of the set values can be changed． にロにご（Lock 2）：Only SV can be changed． Lםル（Lock 3）：All set values except input type can be chan However，they revert to their previous value off because they are not saved in the non－v Do not change any setting item in $\mathrm{CH} 1, \mathrm{CH} 2$ in $\mathrm{CH} 1, \mathrm{CH} 2$ function groups is changed，it w items such as the SV（desired value）and A Be sure to select Lock 3 when changing the software communication．（If a value set via the same as the value before the setting，the in non－volatile memory．）	nged． after the power is turned olatile memory． function groups．If any item will affect other setting larm value． set value frequently via software communication is e value will not be written
ニズっ	Communication protocol －Selects communication protocol． －Available when the Serial communication（C5 option）is added． －пローデに ：Shinko protocol ショロif：MODBUS ASCII mode নindir ：MODBUS RTU mode	
ローデー	Instrument number －Sets the instrument number of this unit．（The instrument numbers one when multiple instruments are connected in Serial commun communication is impossible．） －Available when the Serial communication（C5 option）is added． －Setting range： 0 to 95	0 ars should be set one by nication，otherwise
ロスーロー	Communication speed －Selects a communication speed equal to that of the host comput －Available when the Serial communication（C5 option）is added． －－9E： 9600 bps 敫： 19200 bps 	$9600 \mathrm{bps}$ uter．
ロニド	Data bit／Parity －Selects data bit and parity． －Available when the Serial communication（C5 option）is added． －日rana ： 8 bits／No parity Tinan ： 7 bits／No parity 日E日ー ： 8 bits／Even parity TEばゥ： 7 bits／Even parity Baロロー： 8 bits／Odd parity 7aロロ＇ 7 bits／Odd parity	7 bits／Even parity
ニスール	Stop bit －Selects the stop bit． －Available when the Serial communication（C5 option）is added． － \square I： 1 \square E： 2	

Character	Name，Function，Setting Range	Factory Default
－ER＇	－SV can be set with either the Remote（Remote operation）or Local method（keypad operation）． －Available when the External setting input is selected from the Block function（Console software）． －LaEL：Local（The SV can be set by the front keypad as usual．） ーE，I＇：Remote（The SV can be set in analog by external remote operation．）	
－1：	－Sets the high limit value when External setting input is selected from the Block function （Console software）．（e．g．For 4 to 20 mADC ，the value corresponds to 20 mA input．） When the Cascade control spec is selected，this sets the high limit value corresponding to the master（CH2）MV 100\％． For Potentiometer input spec，this sets the Potentiometer scaling high limit value． Available for Potentiometer input spec or when External setting input or Cascade control spec is selected from the Block function（Console software）． －Setting range：External setting scaling low limit to Input range high limit	
－1：	－Sets the low limit value when External setting input is selected from the Block function （Console software）．（e．g．For 4 to 20 mADC ，the value corresponds to 4 mA input．） When the Cascade control spec is selected，this sets the low limit value corresponding to the master（CH2）MV 0\％． For Potentiometer input spec，this sets the Potentiometer scaling low limit value． Available for Potentiometer input spec or when External setting input or Cascade control spec is selected from the Block function（Console software）． －Setting range：Input range low limit to External setting scaling high limit	
	－Sets remote bias value． During remote action，the control desired value adds SV to the remote bias value． Available when External setting input is selected from the Block function（Console software）． －Setting range：Converted value of $\pm 20 \%$ of the input span DC voltage，current inputs：$\pm 20 \%$ of the scaling span（The placement of the decimal point follows the selection．）	
	Available only when Transmission output is selected from the Block function（Console software）． －FUロ PV transmission hロ：SV transmission तUロ：MV transmission	
	Transmission output high limit －Sets the Transmission output high limit value． （For 4 to 20 mA DC ，the value correponds to 20 mA output．） Available when Transmission output is selected from the Block －Setting range： PV，SV transmission：Transmission output low limit to Input MV transmission：Transmission output low limit to 105.0	PV，SV transmission： $1370^{\circ} \mathrm{C}$ MV transmission：100．0\％ function（Console software）． range high limit （\％）
＇－	Transmission output low limit －Sets the Transmission output low limit value． （For 4 to 20 mADC ，the value correponds to 4 mA output．） Available when Transmission output is selected from the Block －Setting range： PV，SV transmission：Input range low limit to Transmission out MV transmission：-5.0% to Transmission output high limit	PV，SV transmission：$-200^{\circ} \mathrm{C}$ MV transmission：0．0\％ function（Console software）．

Character	Name，Function，Setting Range	Factory Default
Fbinc	Timer action －Selects the timer action．（Refer to the＇Control timer＇and＇Delay Available for Timer spec． －IG NE：Control timer「：I：：Delay timer 1 「寝：Delay timer 2	Control timer timer＇on p．38）
ה－4	Timer action time unit －Selects the time unit for the Control timer，Delay timer 1 and Delay Available only for Timer spec． －iir Minute 4，Second	Minute elay timer 2.
ロロ，${ }^{\text {I }}$	ON delay timer －Sets ON delay timer time． Available for Timer spec． Available when Delay timer 1 or 2 is selected in［Timer action］． －Setting range： 0 to 9999 （Time unit follows the selection in［Tim	0 er action time unit］．）
QFF＇	OFF delay timer －Sets OFF delay timer time． Available for Timer spec． Available when Delay timer 1 or 2 is selected in［Timer action］． －Setting range： 0 to 9999 （Time unit follows the selection in［Tim	0 er action time unitl．）
「スム	Control timer start temperature －Sets Control timer start temperature． Available for Timer spec． Available when Control timer is selected in［Timer action］． －Setting range：Scaling low limit to Scaling high limit	$0^{\circ} \mathrm{C}$
「シュ	Control timer time －Sets the control time after temperature achieves Control Timer Available for Timer spec． Available when Control timer is selected in［Timer action］． －Setting range： 0 to 9999 （Time unit follows the selection in［Tim	0 Start temperature． mer action time unit］．）
B，\％i＇	Auto－light function －Selects Auto－light Enabled／Disabled． －$-1--$ ．Disabled U＇白：Enabled	Disabled

- Control Timer

Control timer starts when CH 1 input exceeds Control timer start temperature, and after Control timer set time has passed, the control (Output low limit value for direct current output) and Alarm action stop.
However, for the Direct control action, Control timer starts when CH 1 input drops below the Control timer start temperature.
CH1 PV/SV Display indicates (lights) CH1 PV, and CH2 PV/SV Display flashes timer remaining time.
 If the Control timer time is set to 0 (zero), the Control timer will not work.
Even though CH 1 input does not reach Control timer start temperature, the Control timer can start by

If the Control timer set value has been changed while the Control timer is working, the setting will come into effect next time.
If the Control timer time has passed during AT, the AT will be forcibly stopped, and each parameter returns to the previous value at which AT was performed.

- Delay Timer

When Delay timer 1 is selected:

ON delay timer starts when DI input is ON (Closed), and timer remaining time will be indicated on the CH2 PV/SV Display.
Timer output turns ON after ON delay timer time has passed.
After that, if DI input is turned OFF (Open), OFF delay timer starts, and timer remaining time will be indicated on the CH2 PV/SV Display.
Timer output turns OFF after OFF delay timer time has passed.

When Delay timer 2 is selected:

Control and Alarm action start/stop are interlocked with the timer output.
If Delay timer is restarted, Alarm action will return to its initial status (for the Alarm with standby, it returns to standby status again).
Between DI terminals Open: OFF
Between DI terminals Closed: ON
Circuit current when closed: 12 mA

Delay timer 1

DI (digital input)
T.OUT (timer output)

ON DLY: ON delay timer setting OFF DLY: OFF delay timer setting
(Fig. 8.4-2)

Delay timer 2

DI (digital input)
T.OUT (timer output)
CH1 control output

CH1 Alarm action

ON DLY : ON delay timer setting OFF DLY: OFF delay timer setting
(Fig. 8.4-3)

9. Settings

9.1 SV Group

Not available for Potentiometer input spec.
To proceed to the SV group, follow the procedure below.
(1) '. . \square To enter the SV group, press the \square key once in PV/SV Display Mode.
(2) ' ᄂ I Press the key. 'CH1 SV' will appear.

Character	Name, Function, Setting Range \quad Factory Default
\checkmark ¢	CH1 SV - Sets CH1 SV. If Cascade control spec is selected from the Block function (Console software), CH1 SV will be AT point for slave. - Setting range: CH 1 scaling low limit to CH 1 scaling high limit For Cascade control spec: External setting scaling low limit to External setting scaling high limit For Difference (addition) input \& when Base channel (*) is DC input: CH 1 difference (addition) indication low limit to CH 1 difference (addition) indication high limit
4 Ba	CH2 SV - Sets CH2 SV. - Not available for Timer spec. Not available if Heating/Cooling control output or External setting input is selected from the Block function (Console software). - Setting range: CH 2 scaling low limit to CH 2 scaling high limit For Difference (addition) input \& when Base channel (${ }^{*}$) is DC input: CH 2 difference (addition) indication low limit to CH 2 difference (addition) indication high limit

(*) If Difference (addition) input is selected for Input 1 block (Console software), CH1 (Input 1) will be the Base channel.
If Difference (addition) input is selected for Input 2 block (Console software), CH2 (Input 2) will be the Base channel.

9．2 CH1 Parameter Group

To proceed to CH 1 parameter group，follow the procedure below．
（1）Pa！
Press the （ key twice in PV／SV Display Mode．The unit will proceed to the CH1 parameter group．
（2）Press the key．＇Control Allowed／Prohibited＇will appear．

Character	Name，Function，Setting Range \quad Factory Default
mFra	Control Allowed／Prohibited －Selects Control Allowed or Prohibited． When Control Prohibited is selected，the unit reverts to PV／SV Display Mode by pressing the key． －anत Control Allowed ar：Control Prohibited
FU110	Auto／Manual control －Selects Automatic or Manual control． －Filiil a：Automatic control ラiFinil：Manual control
ニッローは	Manual control MV MV of the automatic control －Sets manual control MV． If the sey isial key is pressed after manual control MV is set，the unit will revert to PV／SV Display Mode． Not available if automatic control is selected． Factory Default of manual control is the MV of the automatic control．（After the power is turned on，the preset MV will be used．） －Setting range：CH1 output low limit to CH1 output high limit
Fira	AT／Auto－reset Perform／Cancel －Selects AT Perform／Cancel or Auto－reset Perform／Cancel． PVISV Display Mode． －If the AT is cancelled during the process，P，I，D and ARW values revert to the previous value at which AT was performed． －AT will be forced to stop if it has not been completed within 4 hours． －Auto－reset can be performed when the $P(I=0, D=0)$ or $P D(I=0)$ is control action． Auto－reset is finished in approximately 4 minutes．It cannot be released while performing this function． －－－－－：\quad AT／Auto－reset Cancel Firロ」r＇E！：AT／Auto－reset Perform
$\mathrm{P} \mathrm{\square}$	Proportional band －Sets the proportional band． －Control action becomes ON／OFF control when set to 0 or 0.0 ． －If Heating／Cooling control output is selected from the Block function（Console software）， this will be OUT1 proportional band． －Setting range： 0 to $9999^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Range with a decimal point： 0.0 to $999.9^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ） DC voltage，current inputs： 0.0 to 999.9%［Corresponds to the scaling span． For Difference（addition）input \＆when Base channel is DC input：Corresponds to the Difference（addition）indication span．］
F－b	OUT2 proportional band －Sets OUT2 proportional band． －OUT2 becomes ON／OFF control when OUT1 proportional band is set to 0 or 0.0 ． －Available only when Heating／Cooling control output is selected from the Block function （Console software）． －Setting range： 0.0 to 10.0 times OUT1（CH1）proportional band
$1 \mathrm{\square}$	Integral time －Sets the integral time． －Setting the value to 0 disables the function． －When PD $(I=0)$ is control action，Auto－reset can be performed，or Manual reset value can be set． －Not available for ON／OFF control． －Setting range： 0 to 3600 seconds

Character	Name, Function, Setting Range		Factory Defau
$\square \square$	Derivative time - Sets the derivative time. - Setting the value to 0 disables the function. - Not available for ON/OFF control. - Setting range: 0 to 3600 seconds		50 seconds
7	ARW - Sets the ARW (Anti-reset windup). - Available only when PID is the control action. - Setting range: 0 to 100%		50\%
- ¢ \%	Manual reset value - Sets the Manual reset value. - Available when $\mathrm{P}(\mathrm{I}=0, \mathrm{D}=0)$ or $\mathrm{PD}(\mathrm{I}=0)$ is the control action. - Setting range: -100.0 to $100.0^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) DC voltage, current inputs: -1000 to 1000 (The placement of the decimal point follows the selection.)		
\square	Proportional cycle Relay contact output: 30 seconds - Sets the proportional cycle. Non-contact voltage output: 3 seconds - Not available for ON/OFF control or direct current output type. This will be OUT1 proportional cycle when Heating/Cooling control output is selected from the Block function (Console software). - Setting range: 1 to 120 seconds		
- -	OUT2 proportional cycle Relay contact output: 30 seconds - Sets OUT2 proportional cycle. Non-contact voltage output: 3 seconds - Available only when Heating/Cooling control output is selected from the Block function (Console software). Not available for direct current output type or if OUT2 is in ON/OFF control. - Setting range: 1 to 120 seconds		
Bra	Alarm 1 value - Sets Alarm 1 value. - Setting the value to 0 or 0.0 disables the function (except Process high and Process low alarm). - Not available if No Alarm action is selected in [Alarm 1 type]. - Setting range: (Table 9.2-1)		
	Alarm Type	Setting Range	
	High limit alarm	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)^{* 1}$	
	High/Low limits alarm	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)^{* 1}$	
	High/Low limit range alarm	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$	
	Process high alarm	Input range low limit to input range high limit *2	
	Process low alarm	Input range low limit to input range high limit *2	
	High limit with standby alarm	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$	
	Low limit with standby alarm	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) * 1$	
	High/Low limits with standby alarm	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right){ }^{* 1}$	
	*1: For DC voltage, current input, the input span is the same as the scaling span. For Difference (addition) input \& when Base channel is DC input: Corresponds to the Difference (addition) indication span. *2: For DC voltage, current inputs, input range low (or high) limit value is the same as the scaling low (or high) limit value. For Difference (addition) input \& when Base channel is DC input: Corresponds to the Difference (addition) indication low (or high) limit value. - When input has a decimal point, the negative low limit value is -199.9 , and the positive high limit value is 999.9. - All Alarm actions except process alarm are the \pm deviation setting from the SV.		

Character	Name, Function, Setting Range	Factory Default
FD]	Alarm 2 value - Sets Alarm 2 value. (Refer to Alarm 1 value.) Available only when the AO or AW option is added.	$0^{\circ} \mathrm{C}$
$B \square$	Alarm 3 value - Sets Alarm 3 value. (Refer to Alarm 1 value.) Available only when the AO option is added.	$0^{\circ} \mathrm{C}$
F4】	Alarm 4 value - Sets Alarm 4 value. (Refer to Alarm 1 value.) Available only when the AO option is added.	$0^{\circ} \mathrm{C}$
$4 \square$ i- ${ }^{\prime}$ and CT1 current, alternating indication on the PV/SV Display	Heater burnout alarm 1 value - Sets the heater current value for Heater burnout alarm 1 (CT1), Setting to 0.0 disables the alarm. CT1 current value and character $i-1$ are indicated alternately on When the output is ON, the CT1 current value is updated. When the output is OFF, the WCL-13A memorizes the previous was ON. - It is recommended to set approx. 80% of the heater current val the voltage fluctuation. - Available only when Heater burnout alarm (W, W3 option) is ad - Setting range: Rated current $20 \mathrm{~A}: 0.0$ to $20.0 \mathrm{~A}, 100 \mathrm{~A}: 0.0$ to 100.0 A	0.0 A the PV/SV Display. value when the output ue in consideration of ded.
HED Hz and CT2 current, alternating indication on the PV/SV Display	Heater burnout alarm 2 value - Sets the heater current value for Heater burnout alarm 2 (CT2), Setting to 0.0 disables the alarm. CT2 current value and characters H He are indicated alternately When the output is ON, the CT2 current value is updated. When the output is OFF, the WCL-13A memorizes the previous was ON. - It is recommended to set approx. 80% of the heater current valu the voltage fluctuation. - Available only when Heater burnout alarm (W3 option) is added - Setting range: Rated current $20 \mathrm{~A}: 0.0$ to $20.0 \mathrm{~A}, \quad 100 \mathrm{~A}: 0.0$ to 100.0 A	$0.0 \mathrm{~A}$ on the PV/SV Display. value when the output ue in consideration of
BF-H	Loop break alarm band - Sets the temperature to assess the Loop break alarm. - Setting to 0 (zero) disables the alarm. - Setting range: 0 to $150^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ Range with a decimal point: 0.0 to $150.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current inputs: 0 to 1500 (The placement of the de selection)	$0^{\circ} \mathrm{C}$ cimal point follows the
1F- ${ }^{\text {F }}$	Loop break alarm time - Sets the time to assess the Loop break alarm. - Setting to 0 (zero) disables the alarm. - Setting range: 0 to 200 minutes	0 minutes

9．3 CH2 Parameter Group

Not available for Timer spec or Potentiometer input spec．
Not available if Heating／Cooling control output or External setting input is selected from the Block function（Console software）．

To proceed to CH 2 parameter group，follow the procedure below．
$\begin{array}{ll}\text {（1）} \\ \text {（2）} \\ \text {（2）} & \text { Press the } \mathbb{Q} \text { key } 3 \text { times in PV／SV Display Mode．The unit will proceed to the } \mathrm{CH} 2 \\ \text { parameter group }\end{array}$

Character	Name，Function，Setting Range	Factory Default
aに品	Control Allowed／Prohibited －Selects Control Allowed／Prohibited． When Control Prohibited is selected，the unit reverts to PV／SV the key． －ar－ ：Control Allowed aIF：Control Prohibited	Control Allowed Display Mode by pressing
F！！	Auto／Manual control －Selects Automatic or Manual control． －Filiía：Automatic control 	Automatic control
シタール！	Manual control MV －Sets manual control MV． If the 原號 is pressed after the manual control MV has been se PV／SV Display Mode． Not available if automatic control is selected． Factory Default of manual control is the MV of the automatic co turned on，the preset MV will be used．） －Setting range： CH 2 output low limit to CH 2 output high limit	MV of the automatic control ，the unit will revert to ntrol．（After the power is
F1\％	AT／Auto－reset Perform／Cancel －Selects AT Perform／Cancel or Auto－reset Perform／Cancel． －If the AT is cancelled during the process，P，I，D and ARW values value at which AT was performed． －AT will be forced to stop if it has not been completed within 4 h －Auto－reset can be performed when $P(I=0, D=0)$ or $P D(I=0)$ is Auto－reset is finished in approximately 4 minutes．It cannot be this function． 	AT／Auto－reset Cancel es revert to the previous ours． control action． released while performing
9 Fa	Proportional band －Sets the proportional band． －Control action becomes ON／OFF control when set to 0 or 0．0． －Setting range： 0 to $9999^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ，Range with a decimal point： 0.0 DC voltage，current inputs： 0.0 to 999.9%［Corresponds to the For Difference（addition）input \＆when Base channel is DC input： Difference（addition）indication span．］	$10^{\circ} \mathrm{C}$ 0 to $999.9^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ scaling span． t：Corresponds to the
$1 \square$	Integral time －Sets the integral time． －Setting the value to 0 disables the function． －When PD $(\mathrm{I}=0)$ is control action，Auto－reset can be performed，or M －Not available for ON／OFF control． －Setting range： 0 to 3600 seconds	200 seconds Manual reset value can be set．
4 a	Derivative time －Sets the derivative time． －Setting the value to 0 disables the function． －Not available for ON／OFF control． －Setting range： 0 to 3600 seconds	50 seconds
9	ARW －Sets the ARW（Anti－reset windup）． －Available only when PID is the control action． －Setting range： 0 to 100%	50\％

Character	Name, Function, Setting Range	Factory Default
LF-H	Loop break alarm band - Sets the temperature to assess the Loop break - Setting to 0 (zero) disables the alarm. - Setting range: 0 to $150^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, Range with a decimal point: 0.0 to $150.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current inputs: 0 to 1500 (The plac selection)	$0^{\circ} \mathrm{C}$ cimal point follows the
1F- ${ }^{\text {F }}$	Loop break alarm time - Sets the time to assess the Loop break alarm. - Setting to 0 (zero) disables the alarm. - Setting range: 0 to 200 minutes	0 minutes

10. Operation

10.1 Starting Operation

After the unit is mounted to the control panel and wiring is completed, operate the unit following the procedure below.
(1) Switch power supply to the WCL-13A ON.

For approx. 4 seconds after the power is switched ON, the sensor input characters and temperature unit are indicated on the PV/SV Display of each channel. See (Table 8.1-1), (Table 8.1-2) on p.24. During this time, all outputs and LED indicators are in OFF status.
After that, a setting item selected in [Display selection] will be indicated.
(2) Input each set value.

Refer to " 9 . Settings".
(3) Turn the load circuit power ON.

Control action starts so as to keep the control target at the SV.

10.2 Switching PV/SV

To indicate SV constantly:
To indicate SV constantly, select "'畆] in [Display selection] in Basic function group as follows.
(1) (E.r Press the Q key several times in PV/SV Display Mode until the left characters appear.
(2) 11 'T' Press the Q key multiple times until the left characters (Display selection) appear.
(3) Select "况 $\square(\mathrm{CH} 1 \mathrm{SV} / \mathrm{CH} 2 \mathrm{SV})$ " by pressing the \triangle key.
(4) Press the Q key several times. The unit reverts to PV/SV Display Mode, and CH 1 and CH 2 displays always indicate SV .

To indicate SV temporarily:

Press the ∇ key in PV/SV Display Mode.
While the ∇ key is pressed, the PV/SV indications will switch.
$\mathrm{PV}(\mathrm{SV})$ does not switch if a $\mathrm{CH} 1, \mathrm{CH} 2$ difference or addition inclusive item is selected in [Display selection] in the Basic function group.

10.3 Indicating MV
 To indicate MV:

Press the Ω key for 3 seconds in PV/SV Display Mode.
Keep pressing the key even though the SV group appears during the process.
The 1st decimal point from the right flashes in 500 ms cycles during MV indication.

To cancel MV indication:

Press the key again, or turn the power to the unit OFF and ON again.

10.4 AT Perform/Cancel

How to perform AT (e.g. CH1)

AT can be performed in [AT/Auto-reset Perform/Cancel] in the CH1 parameter group.
 parameter group.
(2) PIT Press the key 3 times. "AT/Auto-reset Perform/Cancel" will appear.
(3) Select "Fil \square (AT Perform)" with the \triangle key.
(4) Press the key. The unit reverts to PV/SV Display Mode, and initiates AT. The AT indicator flashes while AT is performing.

How to cancel AT (e.g. CH1)

AT can be cancelled in [AT/Auto-reset Perform/Cancel] in the CH1 parameter group.
(1) Pal Press the Q key twice in PV/SV Display Mode. The unit proceeds to the CH1 parameter group.

(3) Select "---- (AT Cancel)" with the ∇ key.
(4) Press the key multiple times. The unit reverts to PV/SV Display Mode, and AT stops. If AT is cancelled during this process, each value of P, I, D and ARW reverts to the values before the Auto-tuning was performed.

10.5 Performing Cascade Control

Cascade control of the WCL-13A

To control one process, 2 inputs [CH2 as a master (1st-order controller), and CH 1 as a slave (2ndorder controller)] are used for more advanced control.
MV is calculated from PV and SV of the master (CH2), and is used as SV of the slave (CH1), with which CH 1 control calculation is carried out, then outputs from CH 1 control output.
[CH2 control output will be turned OFF (0 mA for direct current output) or will become OUT2 for Heating/Cooling control. See the "CH2 output" in (Fig. 10.5-1).]
MV (0 to 100\%) of the master (CH2) corresponds to the SV (External setting scaling low limit to External setting scaling high limit) of the slave (CH 1).

(Fig. 10.5-1)

How to perform AT in Cascade control

Perform AT in the Cascade control as follows.

- AT of the slave (CH1)
(1) Set the slave AT point in [CH1 (slave) SV].
(2) Perform AT by selecting "AT Perform" in [AT/Auto-reset Perform/Cancel] in the CH1 parameter group.
P, I, D and ARW values of the slave (CH1) will be automatically set after AT is finished.

- AT of the master (CH2)

(1) Set the External setting scaling high and low limit values of the slave (CH1).
(2) Set the SV of the master (CH2).
(3) Perform AT by selecting "AT Perform" in [AT/Auto-reset Perform/Cancel] in the CH2 parameter group.
P, I, D and ARW values of the master (CH 2) will be automatically set after AT is finished.
Depending on the control target, optimal P, I, D and ARW values might not be obtained. In this case, manually set P, I, D and ARW values while referring to those values after AT performance.

11. Action Explanation

11.1 CH1, CH2 Output Action

: Turns ON or OFF.
For CH 2 output, use terminals 11 and 12.

11.2 CH1, CH2 Output ON/OFF Control Action

	Heating (Reverse) action		Cooling (Direct) action	
Control action				
Relay contact output		$\left\lvert\, \begin{array}{ll}\text { (9)- } & \\ \text { (10) } & \\ \text { - }\end{array}\right.$	(9)- (10- -	
Non-contact voltage output	$\begin{aligned} & +(9-12 \mathrm{VDC} \\ & -(10) \end{aligned}$	$\begin{aligned} & +(9)-\mathrm{OV} \mathrm{DC} \\ & \text {-(10) } \end{aligned}$	$\begin{aligned} & +(9)-0 V D C \\ & -(10) \end{aligned}$	$\begin{aligned} & +(9)-12 \mathrm{~V} D C \\ & -(10) \end{aligned}$
Direct current output	$\begin{aligned} & +(9-20 \mathrm{mADC} \\ & -\stackrel{10}{2}- \end{aligned}$	$\begin{array}{r} +(9)-4 \mathrm{~mA} \mathrm{DC} \\ -(10- \end{array}$	$\begin{aligned} & +(9-4 \mathrm{~mA} \mathrm{DC} \\ & -(10- \end{aligned}$	$\xrightarrow[\substack{+90 \mathrm{~mA} \mathrm{DC} \\-(10}]{ }$
Indicator CH1 OUT Green	Lit	Unlit	Unlit	Lit

[^0]| | High limit alarm | Low limit alarm |
| :---: | :---: | :---: |
| Alarm action | | |
| | High/Low limits alarm | High/Low limit range alarm |
| Alarm action | | |
| | Process high alarm | Process low alarm |
| Alarm action | | |
| | High limit with standby alarm | Low limit with standby alarm |
| Alarm action | | |
| | High/Low limits with standby alarm | |
| Alarm action | | |

: Alarm output is in standby.

CH1 EVT indicator: Lights when CH 1 Alarm output is ON , and turns off when the output is OFF. CH 2 EVT indicator: Lights when CH 2 Alarm output is ON , and turns off when the output is OFF.
11.4 Heating/Cooling Control Action

Control action				
OUT1 Relay contact output		cle action is perfor ccording to deviati	$\begin{aligned} & \text { (9) } \\ & \text { ned } \\ & \text { ned } \\ & \text { nn. } \end{aligned}$	
OUT2 Relay contact output	(12) ${ }^{(1)}$ Cycle action is performe according to deviation.			
OUT1 Non-contact voltage output	$+ \text { (9) }$ 12 V DC -(10)	$\begin{aligned} & +(9)-12 / 0 \mathrm{VDC} \\ & \text {-(10)- } \end{aligned}$ e action is perform ording to deviation	$\begin{aligned} & +(9) \\ & \text {-(10)- } \\ & \text { ov DC } \\ & \text { ed } \end{aligned}$	
OUT2 Non-contact voltage output		+ (11) OV DC (12)	$\begin{aligned} & +\underset{(11)-12 V}{0 / 2-} \\ & -(12) \end{aligned}$ e action is perform ording to deviation	$\text { +(12) } 12 \mathrm{~V} \text { DC }$
OUT1 Direct current output	$\begin{aligned} & +(9)-20 \mathrm{~mA} D C \\ & -(10) \end{aligned}$	$\begin{aligned} & \text { + } 9 \text { (9) } \\ & 20 \text { to } 4 \mathrm{~mA} D C \\ & \text { - (10) } \end{aligned}$ anges continuous cording to deviatio	$\begin{aligned} & + \text { (9)- } \\ & - \text { mA DC } \end{aligned}$	
OUT2 Direct current output		$\begin{aligned} & +(11) \\ & -(12) \end{aligned}$	$\begin{aligned} & \text { +(11)- } \\ & 4 \text { to } 20 \mathrm{~mA} \mathrm{DC} \\ & -(12)-\mathrm{C} \end{aligned}$ anges continuously cording to deviation	$\begin{aligned} & +(11)-20 \mathrm{~mA} \mathrm{DC} \\ & -(12)- \end{aligned}$
Indicator CH1 OUT Green	Lit			Unlit
Indicator CH2 OUT Green	Unlit			Lit

[^1]
11.5 Heating/Cooling Control Action (When Setting Dead Band)

Control action					
$\begin{gathered} \text { OUT1 } \\ \text { Relay contact } \\ \text { output } \end{gathered}$			(9)		
OUT2 Relay contact output					
OUT1 Non-contact voltage output	$\begin{aligned} & + \text { (9) } 12 \mathrm{~V} D \mathrm{C} \\ & -\left(10 _-\right. \end{aligned}$	$\begin{aligned} & +(9)-12 / 0 \mathrm{~V} \mathrm{DC} \\ & -(10)- \end{aligned}$ action is perform ording to deviatio	$+\sqrt{9 \mathrm{9} ~ D C}$		
OUT2 Non-contact voltage output					
OUT1 Direct current output	$\begin{aligned} & +(9)- \\ & 20 \mathrm{~mA} \mathrm{DC} \\ & -10-\mathrm{l} \end{aligned}$	$\begin{aligned} & \text { +(9) } \\ & 20 \text { to } 4 \mathrm{~mA} D C \\ & \text { - (10). } \end{aligned}$ ges continuous rding to deviatio	$\begin{aligned} & +(9)-4 \mathrm{mADC} \\ & -(10)- \end{aligned}$		
$\underset{\substack{\text { OUT2 } \\ \text { Direct current } \\ \text { output }}}{ }$					
Indicator CH1 OUT Green					
	Lit				Unlit
Indicator CH2 OUT Green	Unlit				Lit

[^2]11.6 Heating/Cooling Control Action (When Setting Overlap Band)

: Turns ON (lit) or OFF (unlit).
: Represents Heating control action (OUT1).

- - - - : Represents Cooling control action (OUT2).

12. AT/Auto-Reset of This Controller

12.1 AT (Auto-Tuning)

In order to set each value of P, I, D and ARW automatically, the auto-tuning process should be made to fluctuate to obtain an optimal value. One of 3 types of fluctuation below is automatically selected. For DC voltage, current input, the AT process will fluctuate around the SV for conditions of (A), (B), (C) below.
Sometimes the auto-tuning process will not fluctuate if auto-tuning is performed at or near room temperature. Therefore auto-tuning might not finish normally.
(A) If there is a large difference between the SV and PV as the temperature is rising When AT bias is set to $20^{\circ} \mathrm{C}$, the AT process will fluctuate at the temperatures $20^{\circ} \mathrm{C}$ lower than the SV .

(1) Calculates PID constants
(2) PID constant calculated
(3) Controlled by the PID constant set by AT.
(4) AT bias value
(B) When the control is stable

The AT process will fluctuate around the SV.

(1) Calculates PID constants
(2) PID constant calculated
(3) Controlled by the PID constant set by AT.
(C) If there is a large difference between the SV and PV as the temperature is falling

When AT bias is set to $20^{\circ} \mathrm{C}$, the AT process will fluctuate at the temperature $20^{\circ} \mathrm{C}$ higher than the SV .

(1) Calculates PID constants
(2) PID constant calculated
(3) Controlled by the PID constant set by AT.
(4) AT bias value

12.2 Auto-reset (Offset Correction)

Auto-reset is performed to correct the offset at the point at which PV indication is stabilized within the proportional band during the PD control.
Since the corrected value is internally memorized, it is not necessary to perform auto-reset again as long as the process is the same.
However, when the proportional band (P) is set to 0 or 0.0 , the corrected value is cleared.
Auto-reset is performed

(Fig.12.2-1)

13. Specifications

13.1 Standard Specifications

Rating

Input (CH1, CH2)	Multi-range input:	
	Thermocouple	K, J, R, S, B, E, T, N, PL-II, C(W/Re5-26): External resistance 100Ω max. (However, B input: External resistance: 40Ω max.)
	RTD	Pt100, JPt100 3-wire type Allowable input lead wire resistance (10Ω max. per wire)
	Direct current	0 to $20 \mathrm{mADC}, 4$ to 20 mADC : Input impedance: 50Ω [Connect 50Ω shunt resistor (sold separately) externally] Allowable input current: 50 mA DC max.
	DC voltage	0 to 1 V DC: Input impedance: $1 \mathrm{M} \Omega$ minimum Allowable input voltage: 5 V DC max. Allowable signal source resistance: $2 \mathrm{k} \Omega$ max. 0 to 5 V DC, 1 to $5 \mathrm{~V} \mathrm{DC}, 0$ to 10 V DC : Input impedance: $100 \mathrm{k} \Omega$ minimum Allowable input voltage: 15 V DC max. Allowable signal source resistance: 100Ω max.
	Infrared thermocouple (Infrared TC) input:	
	Infrared TC	RD-300 series, RD-401
Power Supply Voltage	WCL-13A- $\square \square / \square \square$ 100 to 240 V AC $50 / 60 \mathrm{~Hz}$ WCL-13A $\square \square / \square \square 1$ 24 V AC/DC $50 / 60 \mathrm{~Hz}$	
Allowable Voltage Fluctuation Range	$\begin{gathered} \text { WCL-13A- } 85 \text { to } 264 \mathrm{~V} \mathrm{AC} \\ \text { WCL-13A- } \square \square \square \\ 20 \text { to } 28 \mathrm{~V} \mathrm{AC/DC} \end{gathered}$	

General Structure

External Dimensions	$30 \times 88 \times 108 \mathrm{~mm}$ (W \times H \times D, including the socket)	
Mounting	DIN rail	
Case	Material: Flame-resistant resin, Color: Light gray	
Front Panel	Membrane sheet	
Indication Structure	Display	
	CH1 PV/SV Display	Red LED 4-digit, character size $10 \times 4.6 \mathrm{~mm}(\mathrm{HxW})$
	CH2 PV/SV Display	Red LED 4-digit, character size $10 \times 4.6 \mathrm{~mm}$ (HxW)
Setting Structure	CH1, CH2: Input system using membrane sheet key	

Indication Performance

Indication Accuracy (CH1, CH2)	Thermocouple	Within $\pm 0.2 \%$ of each input span ± 1 digit or within $\pm 2^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$, whichever is greater However, R, S input 0 to $200^{\circ} \mathrm{C}$ (32 to $392^{\circ} \mathrm{F}$): Within $\pm 6^{\circ} \mathrm{C}\left(12^{\circ} \mathrm{F}\right)$ B input, 0 to $300^{\circ} \mathrm{C}$ (32 to $572^{\circ} \mathrm{F}$): Accuracy is not guaranteed. K, J, E, T, N input, less than $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right): \pm 0.4 \%$ of each input span ± 1 digit
	RTD	Within $\pm 0.1 \%$ of each input span ± 1 digit or within $\pm 1^{\circ} \mathrm{C}\left(2^{\circ} \mathrm{F}\right)$, whichever is greater
	Direct current	Within $\pm 0.2 \%$ of each input span ± 1 digit
	DC voltage	Within $\pm 0.2 \%$ of each input span ± 1 digit
	Infrared TC	Within $\pm 0.2 \%$ of each input span ± 1 digit or within $\pm 2^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$, whichever is greater

Cold Junction Temperature Compensation Accuracy (CH1, CH2)	Within $\pm 1^{\circ} \mathrm{C}$ at 0 to $50^{\circ} \mathrm{C}$	
Input Sampling Period (CH1, CH2)	$25 \mathrm{~ms}, 125 \mathrm{~ms}, 250 \mathrm{~ms}$, Selectable by keypad	
Potentiometer Input Setting Accuracy	Total resistance	1 to $10 \mathrm{k} \Omega$
	Reference voltage	1 V DC
	Accuracy	Same as setting accuracy
	Temperature coefficient	± 0.05 \%/ ${ }^{\circ} \mathrm{C}$
	Potentiometer input sampling period	Depends on the selection of Input sampling period.
	Potentiometer input high limit and low limit value depend on External setting scaling high limit and low limit value.	

Timer Performance

Time Accuracy	Within $\pm 0.5 \%$ of setting time

Controlling Performance

Setting Accuracy (CH1, CH2)	Same as indication accuracy	
Control Action (CH1, CH2)	PID control (with AT function) PI control: When derivative time is set to 0 PD control (with auto-reset function): When integral time is set to 0 P control (with auto-reset function): When derivative and integral time are set to 0 . ON/OFF control: When proportional band is set to 0 or 0.0	
	Proportional band	0 to $9999^{\circ} \mathrm{C}$ (${ }^{\circ}$) Range with a decimal point: 0.0 to $999.9^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, DC voltage, current input: 0.0 to 999.9% (ON/OFF control when set to 0 or 0.0)
	Integral time	0 to 3600 seconds (OFF when set to 0)
	Derivative time	0 to 3600 seconds (OFF when set to 0)
	Proportional cycle	1 to 120 sec (Direct current output: Not available)
	ARW	0 to 100\%
	Manual reset	$\pm 100.0^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) DC voltage, current inputs: ± 1000 (The placement of the decimal point follows the selection)
	ON/OFF hysteresis	0.1 to $100.0^{\circ} \mathrm{C}$ (F) DC voltage, current inputs: 1 to 1000 (The placement of the decimal point follows the selection)
	Output high limit, Output low limit	0 to 100\% (Direct current output: -5 to 105\%)
	Output rate-of-change	0 to 100\%
Control Output (CH1, CH2)	Relay contact 1a Control capacity El A 250 V AC 250 VAC (resistive load) (inductive load, $\cos \phi=0.4)$ 	
	Non-contact voltage (For SSR drive)	$12 \mathrm{~V} \mathrm{DC} \pm 15 \%$ protected)
	Direct current	4 to $20 \mathrm{~mA} \mathrm{DC} ,\mathrm{Load} \mathrm{resistance:} \mathrm{Max} 550 \Omega$

Alarm	Selectable from the following via keypad. - No Alarm action - High limit alarm - Low limit alarm - High/Low limits alarm - High/Low limit range alarm - Process high alarm - Process low alarm - High limit with standby alarm - Low limit with standby alarm - High/Low limits with standby alarm	
	Setting accuracy	Same as Indication accu
	Action	ON/OFF action
	Hysteresis	Thermocouple, RTD inputs: 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current inputs: 1 to 1000 (The placement of the decimal point follows the selection.)
	Output	No output (Can be read by the status flag when the Serial communication option is added.)
	Alarm delay time	0 to 9999 seconds
Loop Break Alarm	Detects actuator trouble (Heater burnout, sensor burnout).	
	Loop break alarm time	0 to 200 minutes
	Loop break alarm band	Thermocouple, RTD inputs: 0 to $150^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) or 0.0 to $150.0^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$) DC voltage, current inputs: 0 to 1500 (The placement of the decimal point follows the selection.)
	Output	No output (Can be read by the status flag when the Serial communication option is added.)
SV Ramp	When the SV is adjusted, it approaches the new SV by the preset rate-of-change (${ }^{\circ} \mathrm{C} / \mathrm{min},{ }^{\circ} \mathrm{F} / \mathrm{min}$). When the power is turned on, the control starts from the PV, and approaches the SV by the rate-of-change.	
Auto/Manual Control Switching	Automatic or Manual control can be switched by keypad operation. If control action is switched from automatic to manual and vice versa, the balanceless-bumpless function works to prevent a sudden change in manipulated variable. When automatic control is switched to manual control, manual MV is indicated on the display. (The switched CH 1 or CH 2 display flashes.) When power is turned on, control action starts from its previous controller status (last shutdown).	
Timer Spec.	Control timer or Delay timer is selectable via keypad. - Control timer Control timer starts if CH 1 input exceeds Control timer start temperature, and after Control timer time has elapsed, control (Output low limit value for direct current output) and Alarm action will stop. - Delay timer Delay timer starts when DI input is ON (Closed). Timer output turns on after ON delay timer time has passed. Timer output turns off after OFF delay timer time has passed.	
Cascade Control Spec. (Block Function)	To control one process, 2 inputs [CH2 as a master(1st-order controller), and CH 1 as a slave (2nd-order controller)] are used for more advanced control. MV is calculated from PV and SV of the master (CH 2), and is used as SV of the slave $(\mathrm{CH} 1)$, with which CH 1 control calculation is carried out, then outputs from CH 1 control output. [CH 2 control output will be turned OFF (0 mA for direct current output) or will become OUT2 for Heating/Cooling control.] CH 2 will be a master (1st-order controller), CH 1 will be a slave (2nd-order controller). MV (0 to 100\%) of the master (CH2) corresponds to the SV (External setting scaling low limit to External setting scaling high limit) of the slave (CH1).	

Heating/Cooling Control Output Spec. (Block Function)	This is 1 ch Heating/Cooling control output spec. CH 1 will be Heating output (OUT1) and CH2 will be Cooling output (OUT2), followed by control performance.	
	OUT2 proportional band	0.0 to 10.0 times OUT1 (CH1) proportional band (ON/OFF control when set to 0.0)
	Integral time (I)	Same as that of CH 1
	Derivative time(D)	Same as that of CH 1
	OUT2 proportional cycle	1 to 120 seconds
	ARW	Same as that of OUT1
	Overlap/Dead band	Thermocouple, RTD inputs: -100.0 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current inputs: - 1000 to 1000 (The placement of the decimal point follows the selection.)
	OUT2 ON/OFF hysteresis	Thermocouple, RTD inputs: 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current inputs: 1 to 1000 (The placement of the decimal point follows the selection.)
	OUT2 high limit, OUT2 low limit	0 to 100\% (Direct current output: -5 to 105\%)
	OUT2 cooling method	Air cooling (linear characteristics), Oil cooling (1.5th power of the linear characteristics) and Water cooling (2nd power of the linear characteristics) via keypad
External Setting Input (Block Function)	External analog signal will be the SV. Control desired value adds remote bias value to the SV. As a setting signal, select any DC range in [CH2 input type]	
	Setting signal	Direct current: 4 to 20 mA or 0 to 20 mADC DC voltage: 1 to 5 V or 0 to 1 V DC
	Allowable input	Direct current: 50 mADC max. DC voltage (0 to 1 V): 5 V DC max. DC voltage (1 to 5 V): 10 V DC max.
	Input impedance	Direct current: 50Ω [Connect 50Ω shunt resistor (sold separately) externally.] DC voltage: $100 \mathrm{k} \Omega$
	Input sampling period	Depends on the selection of Input sampling period.
Transmission Output Spec. (Block Function)	Converting the value (PV, SV or MV transmission) to analog signal every input sampling period, outputs the value in current.	
	Resolution	10000
	Current	4 to 20 mADC (Load resistance, Max. 550)
	Output accuracy	Within $\pm 0.3 \%$ of transmission output span
CH1 Difference Input (Block Function)	Temperature difference ($\mathrm{CH} 1-\mathrm{CH} 2, \mathrm{CH} 2-\mathrm{CH} 1$) will be the input value for CH 1 , and control for CH 1 performs using this value. $\begin{aligned} & P V=(C H 1 P V-C H 2 P V) \\ & P V=(C H 2 P V-C H 1 P V) \end{aligned}$ The set values such as input type, scaling and PV filter time constant can be set to CH 1 and CH 2 individually. However, if CH ranges differ from each other, indication and difference will be based on the Base channel.	
CH1 Addition Input (Block Function)	Addition value of CH 1 and CH 2 will be the input value for CH 1 , and control for CH 1 performs using this value. $\mathrm{PV}=(\mathrm{CH} 1 \mathrm{PV}+\mathrm{CH} 2 \mathrm{PV})$ The set values such as input type, scaling and PV filter time constant can be set to CH 1 and CH 2 individually. However, if CH ranges differ from each other, indication and addition will be based on the Base channel.	
CH2 Difference Input (Block Function)	Temperature difference ($\mathrm{CH} 1-\mathrm{CH} 2, \mathrm{CH} 2-\mathrm{CH} 1$) will be the input value for CH 2 , and control for CH 2 performs using this value. $\begin{aligned} & \mathrm{PV}=(\mathrm{CH} 1 \mathrm{PV}-\mathrm{CH} 2 \mathrm{PV}) \\ & \mathrm{PV}=(\mathrm{CH} 2 \mathrm{PV}-\mathrm{CH} 1 \mathrm{PV}) \end{aligned}$ The set values such as input type, scaling and PV filter time constant can be set to CH 1 and CH 2 individually. However, if CH ranges differ from each other, indication and difference will be based on the Base channel.	

CH2 Addition Input (Block Function)

Addition value of CH 1 and CH 2 will be the input value for CH 2 , and control for CH 2 performs using this value.
$\mathrm{PV}=(\mathrm{CH} 1 \mathrm{PV}+\mathrm{CH} 2 \mathrm{PV})$
The set values such as input type, scaling and PV filter time constant can be set to CH 1 and CH 2 individually.
However, if CH ranges differ from each other, indication and addition will be based on the Base channel.

Attached Functions

Sensor Correction	When the sensor-measured temperature deviates from the temperature in the controller location, this corrects PV by adjusting the input value of sensors. However, it's only effective within the input rating range regardless of the sensor correction value. - Correction range: -100.0 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ DC voltage, current inputs: -1000 to 1000 (The placement of the decimal point follows the selection.)			
Set Value Lock	Locks all set values so as not to be changed			
Automatic Cold Junction Temperature Compensation (only thermocouple input)	This detects the temperature at the connecting terminal between the thermocouple and the instrument, and always maintains it at the same status as if the reference junction location temperature was at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$.			
Burnout (Overscale)	When the thermocouple or RTD input is burnt out, control output is turned OFF (for direct current output type, output low limit value), and the PV/SV Display flashes [${ }^{---}$]. However, the infrared thermocouple is excluded.			
Indication Range, Control range	Thermocouple, RTD inputs			
	Input	Input Range	Indication Range	Control Range
	K T	-199.9 to $400.0{ }^{\circ} \mathrm{C}$	-199.9 to $450.0{ }^{\circ} \mathrm{C}$	-206.0 to $450.0{ }^{\circ} \mathrm{C}$
	K,	-199.9 to $750.0{ }^{\circ} \mathrm{F}$	-199.9 to $850.0{ }^{\circ} \mathrm{F}$	-209.0 to $850.0{ }^{\circ} \mathrm{F}$
		-199.9 to $850.0{ }^{\circ} \mathrm{C}$	-199.9 to $900.0{ }^{\circ} \mathrm{C}$	-210.0 to $900.0{ }^{\circ} \mathrm{C}$
	Pt100	-200 to $850{ }^{\circ} \mathrm{C}$	-210 to $900{ }^{\circ} \mathrm{C}$	-210 to $900{ }^{\circ} \mathrm{C}$
	Pt100	-199.9 to $999.9^{\circ} \mathrm{F}$	-199.9 to $999.9^{\circ} \mathrm{F}$	-210.0 to $1099.9^{\circ} \mathrm{F}$
		-300 to $1500{ }^{\circ} \mathrm{F}$	-318 to $1600{ }^{\circ} \mathrm{F}$	-318 to $1600{ }^{\circ} \mathrm{F}$
		-199.9 to $500.0{ }^{\circ} \mathrm{C}$	-199.9 to $550.0{ }^{\circ} \mathrm{C}$	-206.0 to $550.0{ }^{\circ} \mathrm{C}$
	JPt100	-200 to $500{ }^{\circ} \mathrm{C}$	-207 to $550{ }^{\circ} \mathrm{C}$	-207 to $550{ }^{\circ} \mathrm{C}$
	JPt100	-199.9 to $900.0{ }^{\circ} \mathrm{F}$	-199.9 to $999.9{ }^{\circ} \mathrm{F}$	-210.0 to $999.9{ }^{\circ} \mathrm{F}$
		-300 to $900{ }^{\circ} \mathrm{F}$	-312 to $1000{ }^{\circ} \mathrm{F}$	-312 to $1000{ }^{\circ} \mathrm{F}$

Indication range and Control range for thermocouple inputs other than the
above: Input range low limit $-50^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ to
Input range high limit $+50^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$

DC input:

Indication range and Control range:
[Scaling low limit - (1\% of Scaling span)] to
[Scaling high limit + (10\% of Scaling span)]
([__-] flashes when input drops below -1999, or [${ }^{--{ }^{-}}$] flashes when input exceeds 9999.)

DC input disconnection:

When DC input is disconnected, the PVISV Display flashes [. . .] for 4 to 20 mA DC and 1 to 5 V DC inputs, and [${ }^{-}$] for to 1 V DC input.
For 0 to 20 mA DC, 0 to 5V DC and 0 to 10 V DC inputs, the PV/SV Display
indicates the value corresponding with 0 mA or 0 V input.
Difference (addition) spec
When Base channel (*) is thermocouple or RTD input:

Input	Input Range	Indication Range	Control Range
K, T	-199.9 to $400.0{ }^{\circ} \mathrm{C}$	-199.9 to $450.0{ }^{\circ} \mathrm{C}$	-206.0 to $450.0{ }^{\circ} \mathrm{C}$
	-199.9 to $750.0{ }^{\circ} \mathrm{F}$	-199.9 to $850.0{ }^{\circ} \mathrm{F}$	-209.0 to $850.0{ }^{\circ} \mathrm{F}$
Pt100	-199.9 to $850.0{ }^{\circ} \mathrm{C}$	-199.9 to $900.0{ }^{\circ} \mathrm{C}$	-210.0 to $900.0{ }^{\circ} \mathrm{C}$
	-200 to $850{ }^{\circ} \mathrm{C}$	-210 to $900{ }^{\circ} \mathrm{C}$	-210 to $900{ }^{\circ} \mathrm{C}$
	-199.9 to $999.9{ }^{\circ} \mathrm{F}$	-199.9 to $999.9{ }^{\circ} \mathrm{F}$	-210.0 to $1099.9^{\circ} \mathrm{F}$
	-300 to $1500{ }^{\circ} \mathrm{F}$	-318 to $1600{ }^{\circ} \mathrm{F}$	-318 to $1600{ }^{\circ} \mathrm{F}$
JPt100	-199.9 to $500.0{ }^{\circ} \mathrm{C}$	-199.9 to $550.0{ }^{\circ} \mathrm{C}$	-206.0 to $550.0{ }^{\circ} \mathrm{C}$
	-200 to $500{ }^{\circ} \mathrm{C}$	-207 to $550{ }^{\circ} \mathrm{C}$	-207 to $550{ }^{\circ} \mathrm{C}$
	-199.9 to $900.0{ }^{\circ} \mathrm{F}$	-199.9 to $999.9{ }^{\circ} \mathrm{F}$	-210.0 to $999.9{ }^{\circ} \mathrm{F}$
	-300 to $900{ }^{\circ} \mathrm{F}$	-312 to $1000{ }^{\circ} \mathrm{F}$	-312 to $1000{ }^{\circ} \mathrm{F}$

	Indication range and Control range for thermocouple inputs other than the above: [Input range low limit $-50^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$] to [Input range high limit $+50^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$] When Base channel (*) is DC input: Indication range and Control range: [CH1(CH2) difference (addition) indication low limit - 1\% of Difference (addition) indication span] to [CH1(CH2) difference (addition) indication high limit $+10 \%$ of Difference (addition) indication span] For any input, the PV/SV Display flashes [. . .] when input drops below [CH1(CH2) difference (addition) indication low limit - 1% of Difference (addition) indication span]. The PV/SV Display flashes [${ }^{-}$]] when input exceeds [CH1(CH2) difference (addition) indication high limit + 10\% of Difference (addition) indication span]. (*) Base channel: If Difference (or addition) input is selected for Input 1 block (console software), CH1 (Input 1) will become the Base channel, and Indication range and Control range will be based on the Base channel input range. If Difference (or addition) input is selected for Input 2 block (console software), CH2 (Input 2) will become the Base channel, and Indication range and Control range will be based on the Base channel input range. Infrared thermocouple burnout: If infrared thermocouple is burnt out, input will become irregular, so indication will be incorrect.
Console Communication	The following operations can be carried out via console connector (specific cable) from an external computer. (1) Reading and setting of the SV, PID values and various set values (2) Reading of PV and action status (3) Function change Cannot be used together with the Serial communication (C5 option).
Block Function	Console software function. Each channel has the following independent blocks, which can be combined freely. (Cannot be set via keypad operation.) - Input block (Channel difference input, Channel addition input) - Control block [Heating/Cooling control output spec, External setting input (Remote) spec, Cascade control spec] - Output block [Output 2 output spec, 1 -input 2-output spec, Transmission output spec (Selectable when CH2 output is direct current output.)] Initial Selection Status:
Power Failure Countermeasure	The setting data is backed up in the non-volatile IC memory.
Self-diagnosis	The CPU is monitored by a watchdog timer, and if an abnormal status occurs, the controller is switched to warm-up status, turning all outputs OFF.
Warm-up Indication	After the power supply to the instrument is turned on, the sensor input characters are indicated on the PV/SV Display for approx. 4 seconds.
Display Sleep Function	Indication item (PV, SV or No indication) on the PV/SV Display can be selected in [Display selection] by keypad. When any item except No indication is selected, displays are turned off if operation does not take place for the time set in [Indication time]. If any key is pressed, displays will light again. If indication time is set to 0 (zero), continuous indication will occur, and this function will be disabled.
Auto-light Function	Automatically measures and controls brightness of the $\mathrm{CH} 1, \mathrm{CH} 2 \mathrm{PV} / \mathrm{SV}$ Displays.

2ch controller spec. (AW option)

Other

Power Consumption	Approx. 9 VA
Ambient Temperature	0 to $50^{\circ} \mathrm{C}$
Ambient Humidity	35 to 85% RH (non-condensing)
Weight	Approx. 200 g (including the socket)
Accessories Included	Instruction manual: 1 copy Communication instruction manual: 1 copy [When Serial communication (C5 option) is added]

Accessories Sold Separately	Socket		ASK-001-1 (Finger-safe, Ring terminals unusable)
			ASK-002-1 (Ring terminals usable)
	Shunt resistor		50Ω (for direct current input)
	USB communication cable		CMB-001 (for SWS-WCL01M Console software)
	When Heater burnout alarm [Option: W (20 A), W (100 A), W3 (20 A), W3 (100 A), AW (20 A), AW (100 A)] is added:		
	CT	W (20 A)	CTL-6-S-H (1 piece needed for each channel)
		W (100 A)	CTL-12-S36-10L1U (1 piece needed for each channel)
		W3 (20 A)	CTL-6-S-H (2 pieces needed for each channel)
		W3 (100 A)	CTL-12-S36-10L1U (2 pieces needed for each channel)
	Connector harness		W 3 m W (20 A), W (100 A): 1 length needed for each channel W3 (20 A), W3 (100 A): 2 lengths needed for each channel
	When Alarm output (AO option) is added		
	Con	ector harness	AO 3 m

13.2 Optional Specifications
 Heater Burnout Alarm (Option code: W, W3)

Monitors heater current with CT (current transformer, sold separately), and detects burnout.
This option cannot be applied to direct current output type.

Rated Current	Must be specified from below: Single-phase 20 A [W (20 A)], Single-phase 100A [W (100 A)], 3-phase 20 A [W3 (20 A)], 3-phase 100A [W3 (100 A)] Single-phase: Detects with CT1 (CT input for CH1), CT3 (CT input for CH2). 3-phase: Detects with CT1, CT2 (CT input for CH1), CT3, CT4 (CT input for CH2).
Setting Range	0.0 to 20.0 A [for W (20 A), W3 (20 A). Disabled when set to 0.0.] 0.0 to 100.0 A [for W (100 A), W3 (100 A). Disabled when set to 0.0]
Setting Accuracy	$\pm 5 \%$ of the rated current
Action Point	Set value
Action	ON/OFF action
Output	No output (Can be read by the status flag when Serial communication is added.)

Serial Communication (Option code: C5)

The following operations can be carried out from an external computer.
Cannot be used together with the Console communication.
(1) Reading and setting of the SV, PID values and various set values
(2) Reading of the PV and action status
(3) Function change

Communication Line	EIA RS-485			
Communication Method	Half-duplex communication			
Synchronization Method	Start-stop synchronization			
Communication Speed	9600, 19200, 38400 bps (Selectable by keypad)			
Data bit/Parity	Data bit: 7 bits, 8 bits Parity: Even, Odd, No parity (Selectable by keypad)			
Stop Bit	1 bit, 2 bits (Selectable by keypad)			
Communication Protocol	Shinko protocol, MODBUS (ASCII mode or RTU mode), Selectable by keypad			
Data format	Communication protocol	Shinko Protocol	MODBUS ASCII	MODBUS RTU
	Start bit	1	1	1
	Data bit	7	7 (8) Selectable	8

	Parity	Even	Even (No parity Odd) Selectable	No parity (Even, Odd) Selectable
	Stop bit	1	1 (2) Selectable	1 (2) Selectable

Alarm Output (Option code: AO)
Adds 2-points open collector output and 4-points status flag for CH 1 and CH 2 respectively.

Heater Burnout Alarm (single-phase) + Alarm Output (Option code: AW)
Adds Heater burnout alarm (Single-phase 20 A or 100 A) + 1-point open collector output + 4-points status flag (for each channel) for $\mathrm{CH} 1, \mathrm{CH} 2$ respectively.
This option cannot be added to the direct current output type.

Rated current	Single-phase 20A [AW (20 A)], Single-phase 100A [AW (100 A)] Must be specified.	
Setting Range	- 0.0 to 20.0 A [When AW (20 A) is selected.] (Disabled when set to 0.0.) - 0.0 to 100.0 A [When AW (100 A) is selected.] (Disabled when set to 0.0.)	
Setting Accuracy	$\pm 5 \%$ of rated value	
Action Point	Set value	
Action	ON/OFF action	
Event Output	- Alarm - Loop break alarm - Loop break alarm + Alarm - Heater burnout alarm - Heater burnout alarm + Alarm - Heater burnout alarm + Loop break alarm - Heater burnout alarm + Alarm + Loop break alarm, Selectable by keypad operation.	
Output	Open collector: Control capacity, 0.1 A 24 V DC 1-point open collector output (for each channel)	
	Connector No.	CT input, Alarm Output
	1	CH1: CT input
	2	CH1: Event 2 output
	3	CH2: CT input
	4	CH2: Event 2 output
Status Flag	If the Serial communication option is added, 4-points status flag (for each channel) can be read.	

14. Troubleshooting

If any malfunctions occur, refer to the following after checking that power is being supplied to the controller.
14.1 Indication

Problem	Possible Cause	Solution
[${ }^{---}$] is flashing on the PV/SV Display.	Burnout of thermocouple, RTD or disconnection of DC voltage (0 to 1 V DC)	Replace each sensor. How to check whether the sensor is burnt out [Thermocouple] If the input terminals of the instrument are shorted, and if a value around room temperature is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [RTD] If approx. 100Ω resistance is connected to the input terminals between A-B of the instrument and between B-B is shorted, and if a value around $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [DC voltage (0 to 1 V DC)] If the input terminals of the instrument are shorted, and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected.
	Check whether the input terminals of thermocouple, RTD or DC voltage (0 to 1 V DC) are securely mounted to the instrument input terminals.	Connect the sensor terminals to the instrument input terminals securely.
[. . - -] is flashing on the PV/SV Display.	Check whether the input signal wire for DC voltage (1 to 5 V DC) or direct current (4 to 20 mADC) is disconnected.	How to check whether the input signal wire is disconnected [DC voltage (1 to 5 V DC)] If the input to the input terminals of this controller is 1 VDC , and if a scaling low limit value is indicated, the controller is likely to be operating normally, however, the signal wire may be disconnected. [Direct current (4 to 20 mA DC)] If the input to the input terminals of this controller is 4 mADC , and if a scaling low limit value is indicated, the controller is likely to be operating normally, however, the signal wire may be disconnected.
	Check whether the input signal wire for DC voltage (1 to 5 V DC) or Direct current (4 to 20 mADC) is securely connected to the controller input terminals.	Connect the signal wire to the controller input terminals securely.
	Check whether the polarity of thermocouple or compensating lead wire is correct. Check whether codes ($\mathrm{A}, \mathrm{B}, \mathrm{B}$) of the RTD match with the controller input terminals.	Wire them correctly.

Problem	Possible Cause	Solution
The value set in [Scaling low limit] remains on the PV/SV Display.	Check whether the input signal wire for DC voltage (0 to $5 \mathrm{~V} \mathrm{DC}, 0$ to 10 V DC) or direct current (0 to 20 mA $\mathrm{DC})$ is disconnected.	How to check whether the input signal wire is disconnected [DC voltage(0 to 5 V DC, 0 to 10 V DC)] If the input to the input terminal of this controller is 1 VDC , and if a value (converted value from Scaling high, low limit setting) corresponding to 1 VDC is indicated, the controller is likely to be operating normally, however, the signal wire may be disconnected. [Direct current (0 to 20 mA DC)] If the input to the input terminal of this controller is 4 mA DC , and if a value (converted value from Scaling high, low limit setting) corresponding to 4 mADC is indicated, the controller is likely to be operating normally, however, the signal wire may be disconnected.
	Check whether the input signal wire for DC voltage (0 to 5 V DC, 0 to 10 V DC) or direct current (0 to 20 mA DC) is securely connected to the controller input terminals.	Connect the signal wire to the controller input terminals securely.
The indication of the PV/SV Display is irregular or unstable.	Check whether the sensor input or temperature unit (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$) is correct.	Set the sensor input and the temperature unit (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$) correctly.
	Sensor correction value is not suitable.	Set it to a suitable value.
	Check whether the sensor specification is correct.	Set the sensor specification properly.
	AC leaks into the sensor circuit.	Use an ungrounded type sensor.
	There may be equipment that interferes with or makes noise near the instrument.	Keep the instrument clear of any potentially disruptive equipment.
The PV does not change.	SV may be selected in [Display selection] in the Basic function group.	Select any indications other than SV.
$\left[\begin{array}{ll}{[-1,-1}\end{array}\right]$ is indicated on the PV/SV Display.	The internal memory is defective.	Please contact our main office or dealers.

14.2 Key Operation

Problem	Possible Cause	Solution
- Settings (SV, P, I, D, proportional cycle, alarm value, etc.) are impossible. - The values do not change by the \square or \square key.	"Lock" is selected in [Set value lock] in the Basic function group.	Release the "Lock" selection.
	During AT or auto-reset.	In the case of AT, cancel AT. It takes approximately 4 minutes until auto-reset is finished.
The setting indication does not change within the rated input range even if the \triangle or ∇ key is pressed, and new values are unable to be set.	Scaling high or low limit value in the $\mathrm{CH} 1, \mathrm{CH} 2$ function group may be set at the point where the value does not change.	Set it to a suitable value.

Problem	Possible Cause	Solution
CH2 SV cannot be set.	Timer spec is selected, or Heating/ Cooling control output or External setting input is selected from the Block function (Console software).	If Timer spec is selected, or if Heating/ Cooling control output or External setting input is selected from the Block function (Console software), [CH2 SV] setting item will not be indicated.
CH2 parameter group is not indicated.	Timer spec or Potentiometer input spec is selected, or Heating/ Cooling control output or External setting input is selected from the Block function (Console software).	If Timer spec or Potentiometer input spec is selected, or if Heating/Cooling control output or External setting input is selected from the Block function (Console software), CH2 parameter group will not be indicated.
CH2 function group is not indicated.	Timer spec or Potentiometer input spec is selected, or Heating/Cooling control output is selected from the Block function (Console software).	If Timer spec or Potentiometer input spec is selected, or if Heating/Cooling control output is selected from the Block function (Console software), CH2 function group will not be
indicated.		

14.3 Control

Problem	Possible Cause	Solution
The PV (temperature) does not rise.	The sensor is out of order.	Replace the sensor.
	Check whether the sensor is securely mounted to the instrument input terminals, or control output terminals are securely mounted to the actuator input terminals.	Mount the sensor or control output terminals securely.
	Ensure that wiring of sensor terminals or control output terminals is correct.	Wire them correctly.
The control output remains in an ON status.	OUT low limit value is set to 100% or higher in $\mathrm{CH} 1, \mathrm{CH} 2$ function group.	Set it to a suitable value.
The control output remains in an OFF status.	"Control Prohibited" has been selected in [Control Allowed/ Prohibited] in $\mathrm{CH} 1, \mathrm{CH} 2$ parameter group.	Select "Control Allowed".
	OUT high limit value is set to 0% or less in the $\mathrm{CH} 1, \mathrm{CH} 2$ function group.	Set it to a suitable value.
Control timer does not work.	Control timer time is set to 0 (zero) seconds in the Basic function group.	Set it to a suitable value.
	Control timer start temperature in the Basic function group is not set to a suitable value.	Timer starts when CH 1 input exceeds Control timer start temperature. (In the case of Direct control action, timer starts when CH 1 input drops below Control timer start temperature.) Set it to a suitable value.
Delay timer does not work.	Timer action time unit, ON delay timer or OFF delay timer in the Basic function group is not set to a suitable value.	Set it to a suitable value.

15．Character Tables

SV Group

Character	Setting Item	Factory Default	Data
4	CH 1 SV	$0^{\circ} \mathrm{C}$	
\square	CH 2 SV	$0^{\circ} \mathrm{C}$	

CH1 Parameter Group

Character	Setting Item	Factory Default	Data
arr	Control Allowed／Prohibited	Control Allowed	
	Auto／Manual control	Automatic control	
	Manual control MV	MV of the automatic control	
F1\％	AT／Auto－reset Perform／Cancel	AT／Auto－reset Cancel	
F	Proportional band	$10^{\circ} \mathrm{C}$	
$F_{\text {F }}^{\square}$	OUT2 proportional band	1.0 times	
$1 \mathrm{\square}$	Integral time	200 seconds	
a－	Derivative time	50 seconds	
9 T	ARW（Anti－reset windup）	50\％	
－－E1	Manual reset value	$0.0^{\circ} \mathrm{C}$	
$\square \mathrm{\square}$	Proportional cycle	Relay contact output： 30 sec Non－contact voltage output： 3 sec	
二，口	OUT2 proportional cycle	Relay contact output： 30 sec Non－contact voltage output： 3 sec	
F1：－	Alarm 1 value	$0^{\circ} \mathrm{C}$	
F10	Alarm 2 value	$0^{\circ} \mathrm{C}$	
为品	Alarm 3 value	$0^{\circ} \mathrm{C}$	
84 F	Alarm 4 value	$0^{\circ} \mathrm{C}$	
H－	Heater burnout alarm 1 value	0.0 A	
H17－	Heater burnout alarm 2 value	0.0 A	
$\cdots{ }^{\text {Bra }}$	Loop break alarm band	$0^{\circ} \mathrm{C}$	
$\square^{\prime} F^{\prime}$	Loop break alarm time	0 minutes	

CH2 Parameter Group

Character	Setting Item	Factory Default	Data
听に	Control Allowed／Prohibited	Control Allowed	
㫙堍日	Auto／Manual control	Automatic control	
	Manual control MV	MV of the automatic control	
F1\％	AT／Auto－reset Perform／Cancel	AT／Auto－reset Cancel	
F	Proportional band	$10^{\circ} \mathrm{C}$	
$1 \mathrm{\square}$	Integral time	200 seconds	
$\square \mathrm{a}$	Derivative time	50 seconds	
17 Ca	ARW（Anti－reset windup）	50\％	
－－E1	Manual reset value	$0.0{ }^{\circ} \mathrm{C}$	
$\square \mathrm{\square}$	Proportional cycle	Relay contact output： 30 sec Non－contact voltage output： 3 sec	
F1：	Alarm 1 value	$0^{\circ} \mathrm{C}$	
F6－	Alarm 2 value	$0^{\circ} \mathrm{C}$	
F8－	Alarm 3 value	$0^{\circ} \mathrm{C}$	
F4－	Alarm 4 value	$0^{\circ} \mathrm{C}$	
4 H	Heater burnout alarm 1 value	0.0 A	
H17	Heater burnout alarm 2 value	0.0 A	
방	Loop break alarm band	$0^{\circ} \mathrm{C}$	
$\square^{\prime} F^{-1}$	Loop break alarm time	0 minutes	

CH1 Function Group

Character	Setting Item	Factory Default	Data
ージイ	Input type	Multi－range input：K -200 to $1370^{\circ} \mathrm{C}$ Infrared TC input： 180 to $250^{\circ} \mathrm{C}$	
H＇H	Scaling high limit	Multi－range input： $1370^{\circ} \mathrm{C}$ Infrared TC input： $500^{\circ} \mathrm{C}$	
4＇1：	Scaling low limit	Multi－range input：$-200^{\circ} \mathrm{C}$ Infrared TC input：$-50^{\circ} \mathrm{C}$	
成近	Decimal point place	No decimal point	
FiLi	PV filter time constant	0.0 seconds	
4 Ta	Sensor correction	$0.0^{\circ} \mathrm{C}$	
$\square \mathrm{\square}$	Emissivity	0.900 times	
－H｜	Output high limit	100\％	
－1，	Output low limit	0\％	
ドリ゙い	Output ON／OFF hysteresis	$1.0^{\circ} \mathrm{C}$	
ロFロ＇	OUT2 cooling method	Air cooling	
－1H	OUT2 high limit	100\％	
－1号号	OUT2 low limit	0\％	
ザジーロ	OUT2 ON／OFF hysteresis	$1.0^{\circ} \mathrm{C}$	
－1	Overlap／Dead band	$0.0^{\circ} \mathrm{C}$	
ar－ Bi^{-}	Output rate－of－change	$0 \% /$ second	
Fr－${ }^{\text {ar }}$	Output when input errors occur	0．0\％	
F 1	Alarm 1 type	No Alarm action	
REFの	Alarm 2 type	No Alarm action	
RシFの	Alarm 3 type	No Alarm action	
	Alarm 4 type	No Alarm action	
ロ曲呂	Alarm 1 hysteresis	$1.0^{\circ} \mathrm{C}$	
のゴ心	Alarm 2 hysteresis	$1.0{ }^{\circ} \mathrm{C}$	
ロジら	Alarm 3 hysteresis	$1.0{ }^{\circ} \mathrm{C}$	
ロードい	Alarm 4 hysteresis	$1.0^{\circ} \mathrm{C}$	
Find	Alarm 1 delay time	0 seconds	
にゴ心	Alarm 2 delay time	0 seconds	
のジツ	Alarm 3 delay time	0 seconds	
	Alarm 4 delay time	0 seconds	
E1Fn	Event 1 output	Alarm	
Eご吅	Event 2 output	Alarm	
－A\％	SV rise rate	$0{ }^{\circ} \mathrm{C} /$ minute	
－Fir	SV fall rate	$0{ }^{\circ} \mathrm{C} /$ minute	
ロari＇	Direct／Reverse action	Reverse action	
Ai＇，b	AT bias	$20^{\circ} \mathrm{C}$	
	Difference（addition）indication high limit	9999	
	Difference（addition）indication low limit	－1999	

CH2 Function Group

Character	Setting Item	Factory Default	Data
ーEの号	Input type	Multi－range input：K－200 to $1370^{\circ} \mathrm{C}$ Infrared TC input： 180 to $250^{\circ} \mathrm{C}$	
HíH	Scaling high limit	Multi－range input： $1370^{\circ} \mathrm{C}$ Infrared TC input： $500^{\circ} \mathrm{C}$	
4＇：	Scaling low limit	Multi－range input：$-200^{\circ} \mathrm{C}$ Infrared TC input：－ $50^{\circ} \mathrm{C}$	
AT，	Decimal point place	No decimal point	
FiLi	PV filter time constant	0.0 seconds	
4 CD	Sensor correction	$0.0^{\circ} \mathrm{C}$	
$\square \square$	Emissivity	0.900 times	
唯	Output high limit	100\％	
口1，	Output low limit	0\％	
H゙らい	Output ON／OFF hysteresis	$1.0^{\circ} \mathrm{C}$	
－1，	Output rate－of－change	$0 \% /$ second	
Fr－4i	Output when input errors occur	0．0\％	
F仵品	Alarm 1 type	No Alarm action	
ロゴ品	Alarm 2 type	No Alarm action	
ロジゥ	Alarm 3 type	No Alarm action	
RUFの	Alarm 4 type	No Alarm action	
Fバら	Alarm 1 hysteresis	$1.0^{\circ} \mathrm{C}$	
Rコバら	Alarm 2 hysteresis	$1.0^{\circ} \mathrm{C}$	
ロジツ	Alarm 3 hysteresis	$1.0^{\circ} \mathrm{C}$	
ロッドシ	Alarm 4 hysteresis	$1.0^{\circ} \mathrm{C}$	
	Alarm 1 delay time	0 seconds	
のゴ心	Alarm 2 delay time	0 seconds	
日ジい	Alarm 3 delay time	0 seconds	
	Alarm 4 delay time	0 seconds	
E1Fの	Event 1 output	Alarm	
EEFの	Event 2 output	Alarm	
－ HiF_{6}	SV rise rate	$0{ }^{\circ} \mathrm{C} /$ minute	
－Bra	SV fall rate	$0{ }^{\circ} \mathrm{C} /$ minute	
ロローI＇	Direct／Reverse action	Reverse action	
Fill－b	AT bias	$20^{\circ} \mathrm{C}$	
BiF H	Difference（addition）indication high limit	9999	
－1F：	Difference（addition）indication low limit	－1999	

Basic Function Setting Group

Character	Setting Item	Factory Default	Data
1ロに！	Set value lock	Unlock	
ロズ心	Communication protocol	Shinko protocol	
ロー゙̆ロロ	Instrument number	0	
ロズット	Communication speed	9600 bps	
ローズ官	Data bit／Parity	7 bits／Even	
ロズー	Stop bit	1	
－E，	Remote／Local	Local	
－1－H	External setting scaling high limit	$1370^{\circ} \mathrm{C}$	
－rib	External setting scaling low limit	$-200^{\circ} \mathrm{C}$	
ーデ而	Remote bias	$0^{\circ} \mathrm{C}$	
「ーロ＇	Transmission output type	Selection from the Block function	
「－1	Transmission output high limit	PV，SV transmission： $1370^{\circ} \mathrm{C}$ MV transmission：100．0\％	
「－1．	Transmission output low limit	PV，SV transmission：$-200^{\circ} \mathrm{C}$ MV transmission： 0.0%	
Fbinc	Timer action	Control timer	
$\bar{\square}$	Timer action time unit	Minute	
anci	ON delay timer	0	
－FF＇	OFF delay timer	0	
「デー	Control timer start temperature	$0^{\circ} \mathrm{C}$	
「ワ，	Control timer time	0	
	Auto－light function	Disabled	
－1i 4	Display selection	CH1 PV／CH2 PV	
	Indication time	00.00	
－－in	Input sampling period	125 ms	
；ミEr	Potentiometer input zero adjustment	$-200^{\circ} \mathrm{C}$	
；HRG	Potentiometer input span adjustment	$1370^{\circ} \mathrm{C}$	

***** Inquiry *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.
[Example]

- Model --------------------------- WCL-13A-RR/MM
- Serial number ---------------- No. 094F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

SHINKO TECHNOS CO., LTD. OVERSEAS DIVISION

Head Office: 2-5-1, Senbahigashi, Minoo, Osaka, Japan
URL: http://www.shinko-technos.co.jp/e/ Tel : +81-72-727-6100
E-mail:
overseas@shinko-technos.co.jp
Fax: +81-72-727-7006

[^0]: : Turns ON or OFF.
 For CH 2 output, use terminals 11 and 12 .

[^1]: : Turns ON (lit) or OFF (unlit).
 ——: Represents Heating control action (OUT1).

 - - - - : Represents Cooling control action (OUT2).

[^2]: : Turns ON (lit) or OFF (unlit).
 : Represents Heating control action (OUT1).

 - - - - : Represents Cooling control action (OUT2).

